% \iffalse meta-comment %% File: carom.dtx % % Copyright 1993,1996,1998,2000,2001,2002, 2004 by Shinsaku Fujita % % This file is part of XyMTeX system. % ------------------------------------- % % This file is a successor to: % % carom.sty % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \typeout{XyMTeX for Drawing Chemical Structural Formulas. Version 1.00} % \typeout{ -- Released December 1, 1993 by Shinsaku Fujita} % Copyright (C) 1993 by Shinsaku Fujita, all rights reserved. % % This file is a part of the macro package ``XyMTeX'' which has been % designed for typesetting chemical structural formulas. % % This file is to be contained in the ``xymtex'' directory which is % an input directory for TeX. It is a LaTeX optional style file and % should be used only within LaTeX, because several macros of the file % are based on LaTeX commands. % % For the review of XyMTeX, see % (1) Shinsaku Fujita, ``Typesetting structural formulas with the text % formatter TeX/LaTeX'', Computers and Chemistry, in press. % The following book deals with an application of TeX/LaTeX to % preparation of manuscripts of chemical fields: % (2) Shinsaku Fujita, ``LaTeX for Chemists and Biochemists'' % Tokyo Kagaku Dozin, Tokyo (1993) [in Japanese]. % % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % % This work has the LPPL maintenance status `maintained'. % The Current Maintainer of this work is Shinsaku Fujita. % % This work consists of the files xymtx-pdf.dtx and xymtx-pdf.ins % and the derived file xymtx-pdf.sty. % % Please report any bugs, comments, suggestions, etc. to: % Shinsaku Fujita, % Department of Chemistry and Materials Technology, % Kyoto Institute of Technology, % Matsugasaki, Sakyoku, Kyoto, 606, Japan % % New address: % Shinsaku Fujita, % Department of Chemistry and Materials Technology, % Kyoto Institute of Technology, \\ % Matsugasaki, Sakyoku, Kyoto, 606 Japan % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{August 16, 1996} % \def\versi@nno{ver1.01} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{December 01, 1993} % \def\versi@nno{ver1.00} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{August 16, 1996} % \def\versi@nno{ver1.01} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{October 31, 1998} % \def\versi@nno{ver1.02} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{December 25, 1998} % \def\versi@nno{ver2.00} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{June 14, 2000} % \def\versi@nno{ver2.00a} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{June 20, 2001} % \def\versi@nno{ver2.01} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{April 30, 2002} % \def\versi@nno{ver3.00} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{May 30, 2002} % \def\versi@nno{ver4.00} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\j@urnalname{carom} % \def\versi@ndate{August 30, 2004} % \def\versi@nno{ver4.01} % \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % \fi % % \CheckSum{2982} %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} % % \setcounter{StandardModuleDepth}{1} % % \StopEventually{} % \MakeShortVerb{\|} % % \iffalse % \changes{v1.01}{1996/08/16}{first edition for LaTeX2e} % \changes{v1.02}{1998/10/31}{revised edition for LaTeX2e} % \changes{v2.00}{1998/12/25}{enhanced edition for LaTeX2e} % \changes{v2.00a}{2000/06/14}{bug fix} % \changes{v2.01}{2001/06/30}{Size reduction} % \changes{v3.00}{2002/04/30}{sfpicture enviromnent etc.} % \changes{v4.00}{2002/05/30}{PostScript output and ShiftPicEnv} % \changes{v4.01}{2002/08/30}{Minor additions} % \changes{v5.00}{2010/10/01}{the LaTeX Project Public License} % \fi % % \iffalse %<*driver> \NeedsTeXFormat{pLaTeX2e} % \fi \ProvidesFile{carom.dtx}[2010/10/01 v5.00 XyMTeX{} package file] % \iffalse \documentclass{ltxdoc} \GetFileInfo{carom.dtx} % % %%XyMTeX Logo: Definition 2%%% \def\UPSILON{\char'7} \def\XyM{X\kern-.30em\smash{% \raise.50ex\hbox{\UPSILON}}\kern-.30em{M}} \def\XyMTeX{\XyM\kern-.1em\TeX} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \title{Drawing carbocyclic compounds by {\sffamily carom.sty} (\fileversion) of \XyMTeX{}} \author{Shinsaku Fujita \\ Shonan Institute of Chemoinformatics Mathematical Chemistry, \\ Kaneko 479-7 Ooimachi, Ashigara-Kami-Gun, Kanagawa-Ken, 258-0019 Japan % % (old address) % %Department of Chemistry and Materials Technology, \\ % %Kyoto Institute of Technology, \\ % %Matsugasaki, Sakyoku, Kyoto, 606-8585 Japan % % (old address) % % Ashigara Research Laboratories, % % Fuji Photo Film Co., Ltd., \\ % % Minami-Ashigara, Kanagawa, 250-01 Japan } \date{\filedate} % \begin{document} \maketitle \DocInput{carom.dtx} \end{document} % % \fi % % \section{Introduction}\label{carom:intro} % % \subsection{Options for {\sffamily docstrip}} % % \DeleteShortVerb{\|} % \begin{center} % \begin{tabular}{|l|l|} % \hline % \emph{option} & \emph{function}\\ \hline % carom & carom.sty \\ % driver & driver for this dtx file \\ % \hline % \end{tabular} % \end{center} % \MakeShortVerb{\|} % % \subsection{Version Information} % % \begin{macrocode} %<*carom> \typeout{XyMTeX for Drawing Chemical Structural Formulas. Version 5.00} \typeout{ -- Released October 01, 2010 by Shinsaku Fujita} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\j@urnalname{carom} \def\versi@ndate{October 01, 2010} \def\versi@nno{ver5.00} \def\copyrighth@lder{SF} % Shinsaku Fujita % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \typeout{XyMTeX Macro File `\j@urnalname' (\versi@nno) <\versi@ndate>% \space[\copyrighth@lder]} % \end{macrocode} % % \section{List of commands for carom.sty} % % \begin{verbatim} % ******************************* % * carom.sty: list of commands * % ******************************* % % % % \cyclohexanev \@cyclohexanev % \bzdrv \@bzdrv % \decalinev \@decalinev % \decalinevb \@decalinevb % \decalinevt \@decalinevt % \naphdrv \@naphdrv % \naphdrvb \@naphdrvb % \naphdrvt \@naphdrvt % \tetralinev \@tetralinev % \tetralinevb \@tetralinevb % \tetralinevt \@tetralinevt % \hanthracenev \@hanthracenev % \anthracenev \@anthracenev % \hphenanthrenev \@hphenanthrenev % \phenanthrenev \@phenanthrenev % \steroid \@steroid % \steroidchain \@steroidchain % \end{verbatim} % % \begin{verbatim} % % % \cyclohexaneh \@cyclohexaneh % \bzdrh \@bzdrh % \decalineh \@decalineh % \naphdrh \@naphdrh % \tetralineh \@tetralineh % % \end{verbatim} % % \section{Input of basic macros} % % To assure the compatibility to \LaTeX{}2.09 (the native mode), % the commands added by \LaTeXe{} have not been used in the resulting sty % files ({\sf carom.sty} for the present case). Hence, the combination % of |\input| and |\@ifundefined| is used to crossload sty % files ({\sf chemstr.sty} for the present case) in place of the % |\RequirePackage| command of \LaTeXe{}. % \begin{macrocode} % ************************* % * input of basic macros * % ************************* \@ifundefined{setsixringv}{\input chemstr.sty\relax}{} \@ifundefined{decaheterov}{\input hetarom.sty\relax}{} \@ifundefined{decaheteroh}{\input hetaromh.sty\relax}{} \unitlength=0.1pt % \end{macrocode} % % \section{Cyclohexane derivatives} % \subsection{Vertical cyclohexanes} % % The macro |\cyclohexanev| is used for drawing cyclohexane derivatives % of vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\setsixringv|. % % \begin{verbatim} % *************************** % * cyclohexane derivatives * % * (vertical type) * % *************************** % The following numbering is adopted in this macro. % % 1 % * % 6 * * 2 % | | % | | % 5 * * 3 % * % 4 <===== the original point % % \end{verbatim} % % The macro |\cyclohexanev| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % \begin{verbatim} % \cyclohexanev[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to f as well as A, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. % % \begin{verbatim} % BONDLIST = % % none : cyclohexane % a : 1,2-double bond % b : 2,3-double bond % c : 4,3-double bond % d : 4,5-double bond % e : 5,6-double bond % f : 6,1-double bond % A : aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 6 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specifed) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % % \cyclohexanev{1==Cl;2==F} % \cyclohexanev[c]{1==Cl;4==F;2==CH$_{3}$} % \cyclohexanev[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl} % \end{verbatim} % % \begin{macro}{\cyclohexanev} % \begin{macrocode} \def\cyclohexanev{\@ifnextchar[{\@cyclohexanev[@}{\@cyclohexanev[@]}} \def\@cyclohexanev[#1]#2{\sixheterov[#1]{}{#2}} % \end{macrocode} % \end{macro} % % The following definition has been deleted. % % \changes{v1.02}{1998/10/31}{Adding \cs{ylposition}, \cs{@ylsw}, % \cs{yl@shifti}, \cs{@ylii}, \cs{yl@shiftii}, \cs{@ylii}, % \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/11/23}{Adding \cs{set@fusionadd@sixv}} % \changes{v3.00}{2002/04/30}{\cs{cyclohexanev}: Old definition deleted.} % % \subsection{Horizontal cyclohexanes} % % The macro |cyclohexaneh| is used for drawing cyclohexane derivatives % of vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\setsixringh|. % % \begin{verbatim} % *************************** % * cyclohexane derivatives * % * (horizontal type) * % *************************** % The following numbering is adopted in this macro. % % 2 3 % ----- % * * % the original point ===> 1 * * 4 % (0,0) * * % ----- % 6 5 % \end{verbatim} % % The macro |\cyclohexaneh| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % % \begin{verbatim} % \cyclohexaneh[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to f as well as A, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. % % \begin{verbatim} % BONDLIST = % % none : cyclohexane % a : 1,2-double bond % b : 2,3-double bond % c : 4,3-double bond % d : 4,5-double bond % e : 5,6-double bond % f : 6,1-double bond % A : aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 6 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specifed) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % % \cyclohexaneh{1==Cl;2==F} % \cyclohexaneh[c]{1==Cl;4==F;2==CH$_{3}$} % \cyclohexaneh[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl} % \end{verbatim} % % \changes{v2.00a}{2000/06/14}{bug fix: changed letter [r] to [@] % in \cs{cycohexaneh} for horizontal cyclohexanes} % % \begin{macro}{\cyclohexaneh} % \begin{macrocode} \def\cyclohexaneh{\@ifnextchar[{\@cyclohexaneh[@}{\@cyclohexaneh[@]}} \def\@cyclohexaneh[#1]#2{\sixheteroh[#1]{}{#2}} % \end{macrocode} % \end{macro} % % The following definition has been deleted. % % \changes{v1.02}{1998/10/31}{Adding \cs{ylpositionh}, \cs{if@ylsw}, % \cs{yl@shifti}, \cs{@ylii}, \cs{yl@shiftii}, \cs{@ylii}, % \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/11/29}{Adding \cs{set@fusionadd@sixv} for % fused rings} % \changes{v3.00}{2002/04/30}{\cs{cyclohexaneh}: Old definition deleted.} % % \section{Benzene and benzoquinone derivatives} % \subsection{Vertical type} % % The macro |\bzdrv| (|\benzenev|) is used for drawing benzene derivatives % of vertical type as well as benzoquinone derivatives of % vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\cyclohexanev| defined above. % % The macro |\bzdrv| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \changes{v3.00}{2002/04/30}{\cs{benzenev} added} % % \begin{verbatim} % **************************************** % * benzene and benzoquinone derivatives * % * (vertical type) * % **************************************** % % \bzdrv[OPT]{SUBSLIST} % \benzenev[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one character (r, l or c) for designate % aromatic bond patterns or two characters (p? or o?) for quinone % bond patterns. % % \begin{verbatim} % % OPT: (bond pattern) % % none or r : right-handed set of double bonds % l : left-handed set of double bonds % c : aromatic circle % % p or pa : p-quinone (A) % pb : p-quinone (B) % pc : p-quinone (C) % % o or oa : o-quinone (A) % ob : o-quinone (B) % oc : o-quinone (C) % od : o-quinone (D) % oe : o-quinone (E) % of : o-quinone (F) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 6 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % \bzdrv{1==Cl;2==F} % \bzdrv[c]{1==Cl;4==F;2==CH$_{3}$} % \bzdrv[pa]{1D==O;4D==O;2==CH$_{3}$} % \end{verbatim} % % \begin{macro}{\bzdrv} % \begin{macro}{\benzenev} % \begin{macrocode} \def\bzdrv{\@ifnextchar[{\@bzdrv}{\@bzdrv[r]}} \def\@bzdrv[#1]#2{% \iforigpt \typeout{command `bzdrv' is based on `cyclohexanev'.}\fi% %\expandafter\twoch@r#1{}% \expandafter\twoCH@R#1//% \if\@tmpa r% right-handed set of double bonds \ifx\@tmpb\empty \cyclohexanev[bdf]{#2}% \fi \else\if\@tmpa l%left-handed set of double bonds \ifx\@tmpb\empty \cyclohexanev[ace]{#2}% \fi \else\if\@tmpa c%aromatic circle \ifx\@tmpb\empty \cyclohexanev[A]{#2}% \fi \else\if\@tmpa p%p-quinone \if\@tmpb a% (A) \cyclohexanev[be]{#2}% \else\ifx\@tmpb\empty% (A) \cyclohexanev[be]{#2}% \else\if\@tmpb b% (B) \cyclohexanev[cf]{#2}% \else\if\@tmpb c% (C) \cyclohexanev[ad]{#2}% \fi\fi\fi\fi% \else\if\@tmpa o%o-quinone \if\@tmpb a% (A)% \cyclohexanev[ce]{#2}% \else\ifx\@tmpb\empty% (A) \cyclohexanev[ce]{#2}% \else\if\@tmpb b%o-quinone (B) \cyclohexanev[df]{#2}% \else\if\@tmpb c%o-quinone (C) \cyclohexanev[ae]{#2}% \else\if\@tmpb d%o-quinone (D) \cyclohexanev[bf]{#2}% \else\if\@tmpb e%o-quinone (E) \cyclohexanev[ac]{#2}% \else\if\@tmpb f%o-quinone (F) \cyclohexanev[bd]{#2}% \fi\fi\fi\fi\fi\fi\fi% \else% added 1998/11/15 by S. Fujita \cyclohexanev[@#1]{#2}% \fi\fi\fi\fi\fi% }% %end of \bzdrv macro \let\benzenev=\bzdrv % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Horizontal type} % % The macro |\bzdrh| (|\benzeneh|) is used for drawing benzene derivatives % of vertical type as well as benzoquinone derivatives of % vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\cyclohexanev| defined above. % % The macro |\bzdrh| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \changes{v3.00}{2002/04/30}{\cs{benzeneh} added} % % \begin{verbatim} % **************************************** % * benzene and benzoquinone derivatives * % * (horizontal type) * % **************************************** % % \bzdrh[OPT]{SUBSLIST} % \benzeneh[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one character (r, l or c) for designate % aromatic bond patterns or two characters (p? or o?) for quinone % bond patterns. % % \begin{verbatim} % % OPT: (bond pattern) % % none or r : right-handed set of double bonds % l : left-handed set of double bonds % c : aromatic circle % % p or pa : p-quinone (A) % pb : p-quinone (B) % pc : p-quinone (C) % % o or oa : o-quinone (A) % ob : o-quinone (B) % oc : o-quinone (C) % od : o-quinone (D) % oe : o-quinone (E) % of : o-quinone (F) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 6 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % % e.g. % \bzdrh{1==Cl;2==F} % \bzdrh[c]{1==Cl;4==F;2==CH$_{3}$} % \bzdrh[pa]{1D==O;4D==O;2==CH$_{3}$} % % \end{verbatim} % % \begin{macro}{\bzdrh} % \begin{macro}{\benzeneh} % \begin{macrocode} \def\bzdrh{\@ifnextchar[{\@bzdrh}{\@bzdrh[r]}} \def\@bzdrh[#1]#2{% \iforigpt \typeout{command `bzdrh' is based on `cyclohexaneh'.}\fi% %\expandafter\twoch@r#1{}% \expandafter\twoCH@R#1//% %\begin{sfpicture}(800,880)(-\noshift,-\noshift) \if\@tmpa r% right-handed set of double bonds \cyclohexaneh[bdf]{#2}% \else\if\@tmpa l%left-handed set of double bonds \cyclohexaneh[ace]{#2}% \else\if\@tmpa c%aromatic circle \cyclohexaneh[A]{#2}% \else\if\@tmpa p%p-quinone \if\@tmpb a% (A) \cyclohexaneh[be]{#2}% \else\ifx\@tmpb\empty% (A) \cyclohexaneh[be]{#2}% \else\if\@tmpb b% (B) \cyclohexaneh[cf]{#2}% \else\if\@tmpb c% (C) \cyclohexaneh[ad]{#2}% \fi\fi\fi\fi% \else\if\@tmpa o%o-quinone \if\@tmpb a% (A)% \cyclohexaneh[ce]{#2}% \else\ifx\@tmpb\empty% (A) \cyclohexaneh[ce]{#2}% \else\if\@tmpb b%o-quinone (B) \cyclohexaneh[df]{#2}% \else\if\@tmpb c%o-quinone (C) \cyclohexaneh[ae]{#2}% \else\if\@tmpb d%o-quinone (D) \cyclohexaneh[bf]{#2}% \else\if\@tmpb e%o-quinone (E) \cyclohexaneh[ac]{#2}% \else\if\@tmpb f%o-quinone (F) \cyclohexaneh[bd]{#2}% \fi\fi\fi\fi\fi\fi\fi% \else% added 1998/11/15 by S. Fujita \cyclohexaneh[@#1]{#2}% \fi\fi\fi\fi\fi% %\end{sfpicture} }% %end of \bzdrh macro \let\benzeneh=\bzdrh % \end{macrocode} % \end{macro} % \end{macro} % % \section{Decaline derivatives} % \subsection{Vertical type} % % The macro |\decalinev| is used for drawing decaline derivatives % of vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\setdecaringv|. % % \begin{verbatim} % ************************ % * decaline derivatives * % * (vertical type) * % ************************ % The following numbering is adopted in this macro. % % 8 (0G)1 % * 8a * % 7 * * * * 2 % | | | % | | | % 6 * * * * 3 % * 4a * % 5 (0F)4 % ^ % | % the original point % \end{verbatim} % % The macro |\decalinev| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % % \begin{verbatim} % \decalinev[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to k, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A or B indicates aromatic bond patterns (circles). % \changes{v1.02}{1998/10/14}{BONDLIST: k and K at the fused bond} % % \begin{verbatim} % BONDLIST = % % none : decaline % a : 1,2-double bond % b : 2,3-double bond % c : 3,4-double bond % d : 4,4a-double bond % e : 5,4a-double bond % f : 5,6-double bond % g : 6,7-double bond % h : 8,7-double bond % i : 8,8a-double bond % j : 1,8a-double bond % k : 4a,8a-double bond % K : 4a,8a-double bond in the other ring % A : left aromatic circle % B : right aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for 0 (fused positions) % % 0FA : alpha single bond at 8a % 0FB : beta single bond at 8a % 0FU : unspecified single bond at 8a % 0GA : alpha single bond at 4a % 0GB : beta single bond at 4a % 0GU : unspecified single bond at 4a % \end{verbatim} % % \begin{verbatim} % % e.g. % % \decalinev{1==Cl;2==F;0FA==;0GA==} % \decalinev[c]{1==Cl;4==F;2==CH$_{3}$} % \decalinev[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % % \end{verbatim} % % The macro |\decalinev| has been changed into a subsidiary macro % of |\decaheterov| (version 2.00). % % \begin{macro}{\decalinev} % \begin{macrocode} \def\decalinev{\@ifnextchar[{\@decalinev[@}{\@decalinev[@]}} \def\@decalinev[#1]#2{% \iforigpt \typeout{command `decalinev' is based on `decaheterov'.}\fi% \decaheterov[#1]{}{#2}} % \end{macrocode} % \end{macro} % % The following definition has been stopped using. % \changes{v1.02}{1998/10/31}{Adding \cs{ylposition}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/12/5}{Add: fused rings} % \changes{v3.00}{2002/04/30}{\cs{decalinev}: Old definition deleted.} % % \subsection{Vertical-bottom type} % % The macro |\decalinevb| is used for drawing decaline derivatives % of vertical-bottom type (numbering from the bottom to the left-upper part). % The word ``vertical'' means that each benzene ring is a vertical type. % The word ``bottom'' means that the benzene ring with young locant numbers % is located at the bottom. % The skeleton and endocyclic double bonds are drawn directly, % while substituents and exocyclic bonds are placed by useing % the inner macro |\setsixringv|. % \changes{v1.02}{1998/10/13}{Newly added command} % % \begin{verbatim} % *************************** % * decaline derivatives * % * (vertical bottom type) * % *************************** % The following numbering is adopted in this macro. % % 7 % * % 6 * * 8 % | | % | | 0G (4a) % 5 * * * % 0F(4a) * * 1 % | | % | | % 4 * * 2 % * % 3 % ^ % | % the original point % \end{verbatim} % % The macro |\decalinevb| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % % \begin{verbatim} % \decalinevb[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to k, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A or B indicates aromatic bond patterns (circles). % \changes{v1.02}{1998/10/14}{BONDLIST: k and K at the fused bond} % % \begin{verbatim} % BONDLIST = % % none : decaline % a : 1,2-double bond % b : 2,3-double bond % c : 3,4-double bond % d : 4,4a-double bond % e : 5,4a-double bond % f : 5,6-double bond % g : 6,7-double bond % h : 8,7-double bond % i : 8,8a-double bond % j : 1,8a-double bond % k : 4a,8a-double bond % K : 4a,8a-double bond in the other ring % A : left aromatic circle % B : right aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for 0 (fused positions) % % 0FA : alpha single bond at 8a % 0FB : beta single bond at 8a % 0FU : unspecified single bond at 8a % 0GA : alpha single bond at 4a % 0GB : beta single bond at 4a % 0GU : unspecified single bond at 4a % \end{verbatim} % % \begin{verbatim} % % e.g. % % \decalinevb{1==Cl;2==F;0FA==;0GA==} % \decalinevb[c]{1==Cl;4==F;2==CH$_{3}$} % \decalinevb[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % % \end{verbatim} % % The macro |\decalinevb| has been changed into a subsidiary macro % of |\decaheterovb| (version 2.00). % % \begin{macro}{\decalinevb} % \begin{macrocode} \def\decalinevb{\@ifnextchar[{\@decalinevb[@}{\@decalinevb[@]}} \def\@decalinevb[#1]#2{% \iforigpt \typeout{command `decalinevb' is based on `decaheterovb'.}\fi% \decaheterovb[#1]{}{#2}} % \end{macrocode} % \end{macro} % % The following old definition has been stopped using. % \changes{v1.02}{1998/10/31}{Adding \cs{ylposition}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/12/25}{Add: Fused rings} % \changes{v3.00}{2002/04/30}{\cs{decalinevb}: Old definition deleted.} % % \subsection{Vertical-top type} % % The macro |\decalinevt| is used for drawing decaline derivatives % of vertical-bottom type (numbering from the top to the left-down part). % The word ``vertical'' means that each benzene ring is a vertical type. % The word ``top'' means that the benzene ring with young locant numbers % is located at the top. % The skeleton and endocyclic double bonds are drawn directly, % while substituents and exocyclic bonds are placed by useing % the inner macro |\setsixringv|. % \changes{v1.02}{1998/10/13}{Newly added command} % % \begin{verbatim} % ************************ % * decaline derivatives * % * (vertical-top type) * % ************************ % The following numbering is adopted in this macro. % % 2 % * % 1 * * 3 % | | % | | % 0G (8a) * * 4 % 8 * * 0F(4a) % | | % | | % 7 * * 5 % * % 6 % ^ % | % the original point % \end{verbatim} % % The macro |\decalinevt| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % % \begin{verbatim} % \decalinevt[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to k, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A or B indicates aromatic bond patterns (circles). % \changes{v1.02}{1998/10/14}{BONDLIST: k and K at the fused bond} % % \begin{verbatim} % BONDLIST = % % none : decaline % a : 1,2-double bond % b : 2,3-double bond % c : 3,4-double bond % d : 4,4a-double bond % e : 5,4a-double bond % f : 5,6-double bond % g : 6,7-double bond % h : 8,7-double bond % i : 8,8a-double bond % j : 1,8a-double bond % k : 4a,8a-double bond % K : 4a,8a-double bond in the other ring % A : left aromatic circle % B : right aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for 0 (fused positions) % % 0FA : alpha single bond at 8a % 0FB : beta single bond at 8a % 0FU : unspecified single bond at 8a % 0GA : alpha single bond at 4a % 0GB : beta single bond at 4a % 0GU : unspecified single bond at 4a % \end{verbatim} % % \begin{verbatim} % % e.g. % % \decalinevt{1==Cl;2==F;0FA==;0GA==} % \decalinevt[c]{1==Cl;4==F;2==CH$_{3}$} % \decalinevt[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % % \end{verbatim} % % The macro |\decalinevt| has been changed into a subsidiary macro % of |\decaheterovt| (version 2.00). % % \begin{macro}{\decalinevt} % \begin{macrocode} \def\decalinevt{\@ifnextchar[{\@decalinevt[@}{\@decalinevt[@]}} \def\@decalinevt[#1]#2{% \iforigpt \typeout{command `decalinevt' is based on `decaheterovt'.}\fi% \decaheterovt[#1]{}{#2}} % \end{macrocode} % \end{macro} % % The following old definition has been stopped using. % \changes{v1.02}{1998/10/31}{Adding \cs{ylposition}, \cs{if@ylsw}, % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/12/5}{Add: fused rings} % \changes{v3.00}{2002/04/30}{\cs{decalinevt}: Old definition deleted.} % % \subsection{Horizontal type} % % The macro |\decalineh| is used for drawing decaline derivatives % of vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macros |\setsixringh| and |\setfusedbond|. % % \begin{verbatim} % ************************ % * decaline derivatives * % * (horizontal type) * % ************************ % The following numbering is adopted in this macro. % % 2 3 % ----- % * * % 1 * * 4 % * * % 8a (0G) ----- 4a (0F) % * * % the original point ===> 8 * * 5 % (0,0) * * % ----- % 7 6 % \end{verbatim} % % The macro |\decalineh| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % % \begin{verbatim} % \decalineh[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to k, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A or B indicates aromatic bond patterns (circles). % \changes{v1.02}{1998/10/14}{BONDLIST: k and K at the fused bond} % % \begin{verbatim} % % BONDLIST = % % none : decaline % a : 1,2-double bond % b : 2,3-double bond % c : 3,4-double bond % d : 4,4a-double bond % e : 5,4a-double bond % f : 5,6-double bond % g : 6,7-double bond % h : 8,7-double bond % i : 8,8a-double bond % j : 1,8a-double bond % k : 4a,8a-double bond % K : 4a,8a-double bond in the other ring % A : left aromatic circle % B : right aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for 0 (fused positions) % % 0FA : alpha single bond at 8a % 0FB : beta single bond at 8a % 0FU : unspecified single bond at 8a % 0GA : alpha single bond at 4a % 0GB : beta single bond at 4a % 0GU : unspecified single bond at 4a % \end{verbatim} % % \begin{verbatim} % e.g. % % \decalineh{1==Cl;2==F;0FA==;0GA==} % \decalineh[c]{1==Cl;4==F;2==CH$_{3}$} % \decalineh[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % The macro |\decalineh| has been changed into a subsidiary macro % of |\decaheteroh| (version 2.00). % % \begin{macro}{\decalineh} % \begin{macrocode} \def\decalineh{\@ifnextchar[{\@decalineh[@}{\@decalineh[@]}} \def\@decalineh[#1]#2{% \iforigpt \typeout{command `decalineh' is based on `decaheteroh'.}\fi% \decaheteroh[#1]{}{#2}} % \end{macrocode} % \end{macro} % % The following old definition has been stopped using. % \changes{v1.02}{1998/10/31}{Adding \cs{ylpositionh}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/11/30}{Add: fused rings} % \changes{v3.00}{2002/04/30}{\cs{decalineh}: Old definition deleted.} % % \section{Naphthalene and naphtoquinone derivatives} % \subsection{Vertical type} % % The macro |\naphdrv| (|\naphthalenev|) is used for drawing % naphthalene derivatives % of vertical type as well as naphthoquinone derivatives of % vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalinev|. % % The macro |\naphdrv| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \changes{v3.00}{2002/04/30}{\cs{naphthalenev} added} % % \begin{verbatim} % ********************************************** % * naphthalene and naphthoquinone derivatives * % * (vertical type) * % ********************************************** % % \naphdrv[OPT]{SUBSLIST} % \naphthalenev[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters. % % The character `A' is used for designating an aromatic bond pattern, in % which each of the six-membered rings has a central circle. % % \begin{verbatim} % OPT (bond pattern) % % none : naphthalene % A : aromatic circle % \end{verbatim} % % One character `p' or two characters (p?) in the |OPT| argument % designate a p-quinone nucleus, which is present in the % right-hand ring for the case of `p' or `pa' and in the % left-hand ring for the case of `pb'. % % \begin{verbatim} % p or pa : 1,4-quinone (A) left aromatic, right quinone % pb : 1,4-quinone (B) right aromatic, left quinone % \end{verbatim} % % One character `o' or two characters (o?) in the |OPT| argument % designate an o-quinone nucleus in either side of the fused ring. % The second character of each argument indicates one of the possible % type of bond patterns. % % \begin{verbatim} % o or oa : o-quinone (A) % ob : o-quinone (B) % oc : o-quinone (C) % od : o-quinone (D) % oe : o-quinone (E) % of : o-quinone (F) % \end{verbatim} % % One character `q' or two characters (q?) in the |OPT| argument % designate an 2,6-, 1,5- or 1,7-quinone nucleus. % The second character of each argument indicates one of the possible % type of bond patterns. % % \begin{verbatim} % % q or qa : 2,6-quinone (A) % qb : 2,6-quinone (B) 3,7 % qc : 1,5-quinone (C) % qd : 1,5-quinone (D) 4,8 % qe : 1,7-quinone (E) % qf : 1,7-quinone (F) 2,8 % qg : 1,7-quinone (G) 4,6 % qh : 1,7-quinone (H) 3,5 % \end{verbatim} % % One character `P' or two characters (P?) in the |OPT| argument % designate a 1,4,5,8- or 1,2,5,8-quinone nucleus. % % \begin{verbatim} % % P or Pa : 1,4,5,8-quinone (A) % Pb : 1,2,5,8-quinone (B) % \end{verbatim} % % One character `Q' or `O' or two characters (O?) in the |OPT| argument % designate quinone nuclei of remaining types. % % \begin{verbatim} % Q : 1,2,3,4-quinone % % O or Oa : 1,2,5,6-quinone (A) % Ob : 1,2,7,8-quinone (B) % Oc : 1,2,3,5-quinone (C) % Od : 1,2,3,7-quinone (D) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % \naphdrv{1==Cl;2==F} % \naphdrv[A]{1==Cl;4==F;2==CH$_{3}$} % \end{verbatim} % % \begin{macro}{\naphdrv} % \begin{macro}{\naphthalenev} % \begin{macrocode} \def\naphdrv{\@ifnextchar[{\@naphdrv}{\@naphdrv[r]}} \def\@naphdrv[#1]#2{% \iforigpt \typeout{command `naphdrv' is based on `decalinev'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalinev[acfhk]{#2}% \else\if\@tmpa A%aromatic circle \decalinev[AB]{#2}% % \else\if\@tmpa p%p-quinone \if\@tmpb a% (A) \decalinev[bfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinev[bfhk]{#2}% \else\if\@tmpb b% (B) \decalinev[acgk]{#2}% \fi\fi\fi% \else% \if\@tmpa o%o-quinone \if\@tmpb a% (A) \decalinev[cfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinev[cfhk]{#2}% \else\if\@tmpb b%o-quinone (B) \decalinev[dfhj]{#2}% \else\if\@tmpb c%o-quinone (C) \decalinev[afhk]{#2}% \else\if\@tmpb d%o-quinone (D) \decalinev[achk]{#2}% \else\if\@tmpb e%o-quinone (E) \decalinev[acei]{#2}% \else\if\@tmpb f%o-quinone (F) \decalinev[acfk]{#2}% \fi\fi\fi\fi\fi\fi% \fi% %%% \else\if\@tmpa q%various quinone \if\@tmpb a% (A)2,6-type \decalinev[cehj]{#2}% \else\ifx\@tmpb\empty% (A)2,6-type \decalinev[cehj]{#2}% \else\if\@tmpb b%2,6-quinone (B) \decalinev[adfi]{#2}% \else\if\@tmpb c%1,5-quinone (C) \decalinev[bdgi]{#2}% \else\if\@tmpb d%1,5-quinone (D) \decalinev[begj]{#2}% \else\if\@tmpb e%1,7-quinone (E) \decalinev[bdfi]{#2}% \else\if\@tmpb f%1,7-quinone (F) \decalinev[cegj]{#2}% \else\if\@tmpb g%1,7-quinone (G) \decalinev[behj]{#2}% \else\if\@tmpb h%1,7-quinone (H) \decalinev[adgi]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi\fi% \else\if\@tmpa P%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,4,5,8-type \decalinev[bgk]{#2}% \else\ifx\@tmpb\empty% (A)1,4,5,8-type \decalinev[bgk]{#2}% \else\if\@tmpb b% (B)1,2,5,8-type \decalinev[cgk]{#2}% \fi\fi\fi% \else\if\@tmpa Q%1,2,3,4 \decalinev[fhk]{#2}% \else\if\@tmpa O%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,2,5,6-type \decalinev[chk]{#2}% \else\ifx\@tmpb\empty% (A)1,2,5,6-type \decalinev[chk]{#2}% \else\if\@tmpb b% (B)1,2,7,8-type \decalinev[cfk]{#2}% \else\if\@tmpb c% (C)1,2,3,5-type \decalinev[dgi]{#2}% \else\if\@tmpb d% (D)1,2,3,7-type \decalinev[dfi]{#2}% \fi\fi\fi\fi\fi% \else% added 1998/11/23 by S. Fujita \decalinev[@#1]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi% }% %end of \naphdrv macro \let\naphthalenev=\naphdrv % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Vertical-bottom type} % % The macro |\naphdrvb| (|\naphthalenevb|) is used for drawing % naphthalene derivatives % of vertical-bottom type as well as naphthoquinone derivatives of % vertical-bottom type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalinevb|. % \changes{v1.02}{1998/10/14}{Newly added command} % % The macro |\naphdrvb| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \changes{v3.00}{2002/04/30}{\cs{naphthalenevb} added} % % \begin{verbatim} % ********************************************** % * naphthalene and naphthoquinone derivatives * % * (vertical-bottom type) * % ********************************************** % % \naphdrvb[OPT]{SUBSLIST} % \naphthalenevb[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters. % % The character `A' is used for designating an aromatic bond pattern, in % which each of the six-membered rings has a central circle. % % \begin{verbatim} % OPT (bond pattern) % % none : naphthalene % A : aromatic circle % \end{verbatim} % % One character `p' or two characters (p?) in the |OPT| argument % designate a p-quinone nucleus, which is present in the % right-hand ring for the case of `p' or `pa' and in the % left-hand ring for the case of `pb'. % % \begin{verbatim} % p or pa : 1,4-quinone (A) left aromatic, right quinone % pb : 1,4-quinone (B) right aromatic, left quinone % \end{verbatim} % % One character `o' or two characters (o?) in the |OPT| argument % designate an o-quinone nucleus in either side of the fused ring. % The second character of each argument indicates one of the possible % type of bond patterns. % % \begin{verbatim} % o or oa : o-quinone (A) % ob : o-quinone (B) % oc : o-quinone (C) % od : o-quinone (D) % oe : o-quinone (E) % of : o-quinone (F) % \end{verbatim} % % One character `q' or two characters (q?) in the |OPT| argument % designate an 2,6-, 1,5- or 1,7-quinone nucleus. % The second character of each argument indicates one of the possible % type of bond patterns. % % \begin{verbatim} % % q or qa : 2,6-quinone (A) % qb : 2,6-quinone (B) 3,7 % qc : 1,5-quinone (C) % qd : 1,5-quinone (D) 4,8 % qe : 1,7-quinone (E) % qf : 1,7-quinone (F) 2,8 % qg : 1,7-quinone (G) 4,6 % qh : 1,7-quinone (H) 3,5 % \end{verbatim} % % One character `P' or two characters (P?) in the |OPT| argument % designate a 1,4,5,8- or 1,2,5,8-quinone nucleus. % % \begin{verbatim} % % P or Pa : 1,4,5,8-quinone (A) % Pb : 1,2,5,8-quinone (B) % \end{verbatim} % % One character `Q' or `O' or two characters (O?) in the |OPT| argument % designate quinone nuclei of remaining types. % % \begin{verbatim} % Q : 1,2,3,4-quinone % % O or Oa : 1,2,5,6-quinone (A) % Ob : 1,2,7,8-quinone (B) % Oc : 1,2,3,5-quinone (C) % Od : 1,2,3,7-quinone (D) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % \naphdrvb{1==Cl;2==F} % \naphdrvb[A]{1==Cl;4==F;2==CH$_{3}$} % \end{verbatim} % % \begin{macro}{\naphdrvb} % \begin{macro}{\napphathaleneb} % \begin{macrocode} \def\naphdrvb{\@ifnextchar[{\@naphdrvb}{\@naphdrvb[r]}} \def\@naphdrvb[#1]#2{% \iforigpt \typeout{command `naphdrvb' is based on `decalinevb'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalinevb[acfhk]{#2}% \else\if\@tmpa A%aromatic circle \decalinevb[AB]{#2}% % \else\if\@tmpa p%p-quinone \if\@tmpb a% (A) \decalinevb[bfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinevb[bfhk]{#2}% \else\if\@tmpb b% (B) \decalinevb[acgk]{#2}% \fi\fi\fi% \else% \if\@tmpa o%o-quinone \if\@tmpb a% (A) \decalinevb[cfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinevb[cfhk]{#2}% \else\if\@tmpb b%o-quinone (B) \decalinevb[dfhj]{#2}% \else\if\@tmpb c%o-quinone (C) \decalinevb[afhk]{#2}% \else\if\@tmpb d%o-quinone (D) \decalinevb[achk]{#2}% \else\if\@tmpb e%o-quinone (E) \decalinevb[acei]{#2}% \else\if\@tmpb f%o-quinone (F) \decalinevb[acfk]{#2}% \fi\fi\fi\fi\fi\fi% \fi% %%% \else\if\@tmpa q%various quinone \if\@tmpb a% (A)2,6-type \decalinevb[cehj]{#2}% \else\ifx\@tmpb\empty% (A)2,6-type \decalinevb[cehj]{#2}% \else\if\@tmpb b%2,6-quinone (B) \decalinevb[adfi]{#2}% \else\if\@tmpb c%1,5-quinone (C) \decalinevb[bdgi]{#2}% \else\if\@tmpb d%1,5-quinone (D) \decalinevb[begj]{#2}% \else\if\@tmpb e%1,7-quinone (E) \decalinevb[bdfi]{#2}% \else\if\@tmpb f%1,7-quinone (F) \decalinevb[cegj]{#2}% \else\if\@tmpb g%1,7-quinone (G) \decalinevb[behj]{#2}% \else\if\@tmpb h%1,7-quinone (H) \decalinevb[adgi]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi\fi% \else\if\@tmpa P%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,4,5,8-type \decalinevb[bgk]{#2}% \else\ifx\@tmpb\empty% (A)1,4,5,8-type \decalinevb[bgk]{#2}% \else\if\@tmpb b% (B)1,2,5,8-type \decalinevb[cgk]{#2}% \fi\fi\fi% \else\if\@tmpa Q%1,2,3,4 \decalinevb[fhk]{#2}% \else\if\@tmpa O%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,2,5,6-type \decalinevb[chk]{#2}% \else\ifx\@tmpb\empty% (A)1,2,5,6-type \decalinevb[chk]{#2}% \else\if\@tmpb b% (B)1,2,7,8-type \decalinevb[cfk]{#2}% \else\if\@tmpb c% (C)1,2,3,5-type \decalinevb[dgi]{#2}% \else\if\@tmpb d% (D)1,2,3,7-type \decalinevb[dfi]{#2}% \fi\fi\fi\fi\fi% \else% added 1998/11/23 by S. Fujita \decalinevb[@#1]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi% }% %end of \naphdrvb macro \let\naphthalenevb=\naphdrvb % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Vertical-top type} % % The macro |\naphdrvt| (|\naphthalenevt|) is used for drawing % naphthalene derivatives % of vertical-top type as well as naphthoquinone derivatives of % vertical-top type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalinevt|. % \changes{v1.02}{1998/10/14}{Newly added command} % % The macro |\naphdrvt| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \changes{v3.00}{2002/04/30}{\cs{naphthalenevt} added} % % \begin{verbatim} % ********************************************** % * naphthalene and naphthoquinone derivatives * % * (vertical-top type) * % ********************************************** % % \naphdrvt[OPT]{SUBSLIST} % \naphthalenevt[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters. % % The character `A' is used for designating an aromatic bond pattern, in % which each of the six-membered rings has a central circle. % % \begin{verbatim} % OPT (bond pattern) % % none : naphthalene % A : aromatic circle % \end{verbatim} % % One character `p' or two characters (p?) in the |OPT| argument % designate a p-quinone nucleus, which is present in the % right-hand ring for the case of `p' or `pa' and in the % left-hand ring for the case of `pb'. % % \begin{verbatim} % p or pa : 1,4-quinone (A) left aromatic, right quinone % pb : 1,4-quinone (B) right aromatic, left quinone % \end{verbatim} % % One character `o' or two characters (o?) in the |OPT| argument % designate an o-quinone nucleus in either side of the fused ring. % The second character of each argument indicates one of the possible % type of bond patterns. % % \begin{verbatim} % o or oa : o-quinone (A) % ob : o-quinone (B) % oc : o-quinone (C) % od : o-quinone (D) % oe : o-quinone (E) % of : o-quinone (F) % \end{verbatim} % % One character `q' or two characters (q?) in the |OPT| argument % designate an 2,6-, 1,5- or 1,7-quinone nucleus. % The second character of each argument indicates one of the possible % type of bond patterns. % % \begin{verbatim} % % q or qa : 2,6-quinone (A) % qb : 2,6-quinone (B) 3,7 % qc : 1,5-quinone (C) % qd : 1,5-quinone (D) 4,8 % qe : 1,7-quinone (E) % qf : 1,7-quinone (F) 2,8 % qg : 1,7-quinone (G) 4,6 % qh : 1,7-quinone (H) 3,5 % \end{verbatim} % % One character `P' or two characters (P?) in the |OPT| argument % designate a 1,4,5,8- or 1,2,5,8-quinone nucleus. % % \begin{verbatim} % % P or Pa : 1,4,5,8-quinone (A) % Pb : 1,2,5,8-quinone (B) % \end{verbatim} % % One character `Q' or `O' or two characters (O?) in the |OPT| argument % designate quinone nuclei of remaining types. % % \begin{verbatim} % Q : 1,2,3,4-quinone % % O or Oa : 1,2,5,6-quinone (A) % Ob : 1,2,7,8-quinone (B) % Oc : 1,2,3,5-quinone (C) % Od : 1,2,3,7-quinone (D) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % \naphdrvt{1==Cl;2==F} % \naphdrvt[A]{1==Cl;4==F;2==CH$_{3}$} % \end{verbatim} % % \begin{macro}{\naphdrvt} % \begin{macro}{\naphthalenevt} % \begin{macrocode} \def\naphdrvt{\@ifnextchar[{\@naphdrvt}{\@naphdrvt[r]}} \def\@naphdrvt[#1]#2{% \iforigpt \typeout{command `naphdrvt' is based on `decalinevt'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalinevt[acfhk]{#2}% \else\if\@tmpa A%aromatic circle \decalinevt[AB]{#2}% % \else\if\@tmpa p%p-quinone \if\@tmpb a% (A) \decalinevt[bfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinevt[bfhk]{#2}% \else\if\@tmpb b% (B) \decalinevt[acgk]{#2}% \fi\fi\fi% \else% \if\@tmpa o%o-quinone \if\@tmpb a% (A) \decalinevt[cfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinevt[cfhk]{#2}% \else\if\@tmpb b%o-quinone (B) \decalinevt[dfhj]{#2}% \else\if\@tmpb c%o-quinone (C) \decalinevt[afhk]{#2}% \else\if\@tmpb d%o-quinone (D) \decalinevt[achk]{#2}% \else\if\@tmpb e%o-quinone (E) \decalinevt[acei]{#2}% \else\if\@tmpb f%o-quinone (F) \decalinevt[acfk]{#2}% \fi\fi\fi\fi\fi\fi% \fi% %%% \else\if\@tmpa q%various quinone \if\@tmpb a% (A)2,6-type \decalinevt[cehj]{#2}% \else\ifx\@tmpb\empty% (A)2,6-type \decalinevt[cehj]{#2}% \else\if\@tmpb b%2,6-quinone (B) \decalinevt[adfi]{#2}% \else\if\@tmpb c%1,5-quinone (C) \decalinevt[bdgi]{#2}% \else\if\@tmpb d%1,5-quinone (D) \decalinevt[begj]{#2}% \else\if\@tmpb e%1,7-quinone (E) \decalinevt[bdfi]{#2}% \else\if\@tmpb f%1,7-quinone (F) \decalinevt[cegj]{#2}% \else\if\@tmpb g%1,7-quinone (G) \decalinevt[behj]{#2}% \else\if\@tmpb h%1,7-quinone (H) \decalinevt[adgi]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi\fi% \else\if\@tmpa P%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,4,5,8-type \decalinevt[bgk]{#2}% \else\ifx\@tmpb\empty% (A)1,4,5,8-type \decalinevt[bgk]{#2}% \else\if\@tmpb b% (B)1,2,5,8-type \decalinevt[cgk]{#2}% \fi\fi\fi% \else\if\@tmpa Q%1,2,3,4 \decalinevt[fhk]{#2}% \else\if\@tmpa O%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,2,5,6-type \decalinevt[chk]{#2}% \else\ifx\@tmpb\empty% (A)1,2,5,6-type \decalinevt[chk]{#2}% \else\if\@tmpb b% (B)1,2,7,8-type \decalinevt[cfk]{#2}% \else\if\@tmpb c% (C)1,2,3,5-type \decalinevt[dgi]{#2}% \else\if\@tmpb d% (D)1,2,3,7-type \decalinevt[dfi]{#2}% \fi\fi\fi\fi\fi% \else% added 1998/11/23 by S. Fujita \decalinevt[@#1]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi% }% %end of \naphdrvt macro \let\naphthalenevt=\naphdrvt % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Horizontal type} % % The macro |\naphdrh| is used for drawing naphthalene derivatives % of horizontal type as well as naphtoquinone derivatives of % horizontal type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalineh|. % % The macro |\naphdrh| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \changes{v3.00}{2002/04/30}{\cs{naphthaleneh} added} % % \begin{verbatim} % ********************************************** % * naphthalene and naphthoquinone derivatives * % * (horizontal type) * % ********************************************** % % \naphdrh[OPT]{SUBSLIST} % \naphthaleneh[OPT]{SUBSLIST} % % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % The meaning of these characters is the same as described in % the definition of the macro |\naphdrv|. % % \begin{verbatim} % OPT (bond pattern) % % none : naphthalene % A : aromatic circle % % p or pa : 1,4-quinone (A) left aromatic, right quinone % pb : 1,4-quinone (B) right aromatic, left quinone % % o or oa : o-quinone (A) % ob : o-quinone (B) % oc : o-quinone (C) % od : o-quinone (D) % oe : o-quinone (E) % of : o-quinone (F) % % q or qa : 2,6-quinone (A) % qb : 2,6-quinone (B) 3,7 % qc : 1,5-quinone (C) % qd : 1,5-quinone (D) 4,8 % qe : 1,7-quinone (E) % qf : 1,7-quinone (F) 2,8 % qg : 1,7-quinone (G) 4,6 % qh : 1,7-quinone (H) 3,5 % % P or Pa : 1,4,5,8-quinone (A) % Pb : 1,2,5,8-quinone (B) % % Q : 1,2,3,4-quinone % % O or Oa : 1,2,5,6-quinone (A) % Ob : 1,2,7,8-quinone (B) % Oc : 1,2,3,5-quinone (C) % Od : 1,2,3,7-quinone (D) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 8 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % \end{verbatim} % % \begin{verbatim} % e.g. % \naphdrh{1==Cl;2==F} % \naphdrh[A]{1==Cl;4==F;2==CH$_{3}$} % \end{verbatim} % % \begin{macro}{\naphdrh} % \begin{macro}{\naphthaleneh} % \begin{macrocode} \def\naphdrh{\@ifnextchar[{\@naphdrh}{\@naphdrh[r]}} \def\@naphdrh[#1]#2{% \iforigpt \typeout{command `nathdrh' is based on `decalineh'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalineh[acfhk]{#2}% \else\if\@tmpa A%aromatic circle \decalineh[AB]{#2}% % \else\if\@tmpa p%p-quinone \if\@tmpb a% (A) \decalineh[bfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalineh[bfhk]{#2}% \else\if\@tmpb b% (B) \decalineh[acgk]{#2}% \fi\fi\fi% \else% \if\@tmpa o%o-quinone \if\@tmpb a% (A) \decalineh[cfhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalineh[cfhk]{#2}% \else\if\@tmpb b%o-quinone (B) \decalineh[dfhj]{#2}% \else\if\@tmpb c%o-quinone (C) \decalineh[afhk]{#2}% \else\if\@tmpb d%o-quinone (D) \decalineh[achk]{#2}% \else\if\@tmpb e%o-quinone (E) \decalineh[acei]{#2}% \else\if\@tmpb f%o-quinone (F) \decalineh[acfk]{#2}% \fi\fi\fi\fi\fi\fi% \fi% % %% \else\if\@tmpa q%various quinone \if\@tmpb a% (A)2,6-type \decalineh[cehj]{#2}% \else\ifx\@tmpb\empty% (A)2,6-type \decalineh[cehj]{#2}% \else\if\@tmpb b%2,6-quinone (B) \decalineh[adfi]{#2}% \else\if\@tmpb c%1,5-quinone (C) \decalineh[bdgi]{#2}% \else\if\@tmpb d%1,5-quinone (D) \decalineh[begj]{#2}% \else\if\@tmpb e%1,7-quinone (E) \decalineh[bdfi]{#2}% \else\if\@tmpb f%1,7-quinone (F) \decalineh[cegj]{#2}% \else\if\@tmpb g%1,7-quinone (G) \decalineh[behj]{#2}% \else\if\@tmpb h%1,7-quinone (H) \decalineh[adgi]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi\fi% \else\if\@tmpa P%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,4,5,8-type \decalineh[bgk]{#2}% \else\ifx\@tmpb\empty% (A)1,4,5,8-type \decalineh[bgk]{#2}% \else\if\@tmpb b% (B)1,2,5,8-type \decalineh[cgk]{#2}% \fi\fi\fi% \else\if\@tmpa Q%1,2,3,4 \decalineh[fhk]{#2}% \else\if\@tmpa O%quinone having 4 carbonyl groups \if\@tmpb a% (A)1,2,5,6-type \decalineh[chk]{#2}% \else\ifx\@tmpb\empty% (A)1,2,5,6-type \decalineh[chk]{#2}% \else\if\@tmpb b% (B)1,2,7,8-type \decalineh[cfk]{#2}% \else\if\@tmpb c% (C)1,2,3,5-type \decalineh[dgi]{#2}% \else\if\@tmpb d% (D)1,2,3,7-type \decalineh[dfi]{#2}% \fi\fi\fi\fi\fi% \else% added 1998/11/23 by S. Fujita \decalineh[@#1]{#2}% \fi\fi\fi\fi\fi\fi\fi\fi% }% %end of \naphdrh macro \let\naphthaleneh=\naphdrh % \end{macrocode} % \end{macro} % \end{macro} % % \section{Tetraline derivatives} % \subsection{Vertical type} % % The macro |\tetralinev| is used for drawing naphthalene derivatives % of vertical type as well as naphthoquinone derivatives of % vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalinev|. % % The macro |\tetralinev| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \begin{verbatim} % ************************* % * tetraline derivatives * % * (vertical type) * % ************************* % % \tetralinev[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % % \begin{verbatim} % % OPT = none : tetraline % A : aromatic circle % % e or ea : 1,2-double bond % eb : 2,3-double bond % ec : 3,4-double bond % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 4 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for n=5 or 8 % % nSa : bias bond % This option can be used to avoid over-crowding % betweem 1 and 8 or between 4 and 5. % \end{verbatim} % % \begin{verbatim} % e.g. % % \tetralinev{1==Cl;2==F} % \tetralinev[A]{1==Cl;4==F;2==CH$_{3}$} % \tetralinev[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \begin{macro}{\tetralinev} % \begin{macrocode} \def\tetralinev{\@ifnextchar[{\@tetralinev}{\@tetralinev[r]}} \def\@tetralinev[#1]#2{% \iforigpt \typeout{command `tetralinev' is based on `decalinev'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalinev[fhk]{#2}% \else\if\@tmpa A%aromatic circle \decalinev[A]{#2}% \else\if\@tmpa e%inner double bond \if\@tmpb a% (A)% \decalinev[afhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinev[afhk]{#2}% \else\if\@tmpb b% (B) \decalinev[bfhk]{#2}% \else\if\@tmpb c% (C) \decalinev[cfhk]{#2}% \fi\fi\fi\fi% \else%1998/11/23 by Shinsaku Fujita \decalinev[@#1]{#2}% \fi\fi\fi% }% %end of \tetralinev macro % \end{macrocode} % \end{macro} % % \subsection{Vertical-bottom type} % % The macro |\tetralinevb| is used for drawing naphthalene derivatives % of vertical-bottom type as well as naphthoquinone derivatives of % vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalinevb|. % \changes{v1.02}{1998/10/14}{Newly added command} % % The macro |\tetralinevb| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \begin{verbatim} % ******************************** % * tetraline derivatives * % * (vertical-bottom type) * % ******************************** % % \tetralinevb[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % % \begin{verbatim} % % OPT = none : tetraline % A : aromatic circle % % e or ea : 1,2-double bond % eb : 2,3-double bond % ec : 3,4-double bond % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 4 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for n=5 or 8 % % nSa : bias bond % This option can be used to avoid over-crowding % betweem 1 and 8 or between 4 and 5. % \end{verbatim} % % \begin{verbatim} % e.g. % % \tetralinevb{1==Cl;2==F} % \tetralinevb[A]{1==Cl;4==F;2==CH$_{3}$} % \tetralinevb[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \begin{macro}{\tetralinevb} % \begin{macrocode} \def\tetralinevb{\@ifnextchar[{\@tetralinevb}{\@tetralinevb[r]}} \def\@tetralinevb[#1]#2{% \iforigpt \typeout{command `tetralinevb' is based on `decalinevb'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalinevb[fhK]{#2}% %[fhK] in place of [fhk] \else\if\@tmpa A%aromatic circle \decalinevb[A]{#2}% \else\if\@tmpa e%inner double bond \if\@tmpb a% (A)% \decalinevb[afhK]{#2}% \else\ifx\@tmpb\empty% (A) \decalinevb[afhK]{#2}% \else\if\@tmpb b% (B) \decalinevb[bfhK]{#2}% \else\if\@tmpb c% (C) \decalinevb[cfhK]{#2}% \fi\fi\fi\fi% \else%1998/11/23 by Shinsaku Fujita \decalinevb[@#1]{#2}% \fi\fi\fi% }% %end of \tetralinevb macro % \end{macrocode} % \end{macro} % % \subsection{Vertical-top type} % % The macro |\tetralinevt| is used for drawing naphthalene derivatives % of vertical-top type as well as naphthoquinone derivatives of % vertical type. The skeleton and endocyclic double bonds are % drawn directly, while substituents and exocyclic bonds are placed by % useing the inner macro |\decalinevt|. % \changes{v1.02}{1998/10/14}{Newly added command} % % The macro |\tetralinevt| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \begin{verbatim} % ******************************** % * tetraline derivatives * % * (vertical-bottom type) * % ******************************** % % \tetralinevt[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % % \begin{verbatim} % % OPT = none : tetraline % A : aromatic circle % % e or ea : 1,2-double bond % eb : 2,3-double bond % ec : 3,4-double bond % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 4 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for n=5 or 8 % % nSa : bias bond % This option can be used to avoid over-crowding % betweem 1 and 8 or between 4 and 5. % \end{verbatim} % % \begin{verbatim} % e.g. % % \tetralinevt{1==Cl;2==F} % \tetralinevt[A]{1==Cl;4==F;2==CH$_{3}$} % \tetralinevt[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \begin{macro}{\tetralinevt} % \begin{macrocode} \def\tetralinevt{\@ifnextchar[{\@tetralinevt}{\@tetralinevt[r]}} \def\@tetralinevt[#1]#2{% \iforigpt \typeout{command `tetralinevt' is based on `decalinevt'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalinevt[fhk]{#2}% \else\if\@tmpa A%aromatic circle \decalinevt[A]{#2}% \else\if\@tmpa e%inner double bond \if\@tmpb a% (A)% \decalinevt[afhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalinevt[afhk]{#2}% \else\if\@tmpb b% (B) \decalinevt[bfhk]{#2}% \else\if\@tmpb c% (C) \decalinevt[cfhk]{#2}% \fi\fi\fi\fi% \else%1998/11/23 by Shinsaku Fujita \decalinevt[@#1]{#2}% \fi\fi\fi% }% %end of \tetralinevt macro % \end{macrocode} % \end{macro} % % \subsection{Horizontal type} % % The macro |\tetralineh| is used for drawing tetraline derivatives % of horizontal type. % % The macro |\tetralineh| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \begin{verbatim} % ************************* % * tetraline derivatives * % * (horizontal type) * % ************************* % % \tetralineh[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % % \begin{verbatim} % OPT = none : tetraline % A : aromatic circle % % e or ea : 1,2-double bond % eb : 2,3-double bond % ec : 3,4-double bond % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 4 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for n=5 or 8 % % nSa : bias bond % This option can be used to avoid over-crowding % betweem 1 and 8 or between 4 and 5. % \end{verbatim} % % \begin{verbatim} % e.g. % % \tetralineh{1==Cl;2==F} % \tetralineh[A]{1==Cl;4==F;2==CH$_{3}$} % \tetralineh[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \begin{macro}{\tetralineh} % \begin{macrocode} \def\tetralineh{\@ifnextchar[{\@tetralineh}{\@tetralineh[r]}} \def\@tetralineh[#1]#2{% \iforigpt \typeout{command `tetralineh' is based on `decalineh'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \decalineh[fhk]{#2}% \else\if\@tmpa A%aromatic circle \decalineh[A]{#2}% \else\if\@tmpa e%inner double bond \if\@tmpb a% (A)% \decalineh[afhk]{#2}% \else\ifx\@tmpb\empty% (A) \decalineh[afhk]{#2}% \else\if\@tmpb b% (B) \decalineh[bfhk]{#2}% \else\if\@tmpb c% (C) \decalineh[cfhk]{#2}% \fi\fi\fi\fi% \else% added 1998/11/23 by S. Fujita \decalineh[@#1]{#2}% \fi\fi\fi% }% %end of \tetralineh macro % \end{macrocode} % \end{macro} % % \section{Anthracene derivatives} % \subsection{Perhydro-anthracene derivatives of Vertical type} % % The macro |\hanthracenev| is used for drawing perhydroanthracene % derivatives of vertical type. % % The macro |\hanthracenev| has an argument |SUBSLIST| as well as an optional % argument |BONDLIST|. % % \begin{verbatim} % *********************************** % * perhydro anthracene derivatives * % * (vertical type) * % *********************************** % % \hanthracenev[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to p, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A, B, or C indicates an aromatic bond % pattern (circle). % \changes{v1.02}{1998/10/14}{BONDLIST: o, O, p and P at the fused bond} % % \begin{verbatim} % BONDLIST = % % none : hanthracene % a : 1,2-double bond % b : 2,3-double bond % c : 3,4-double bond % d : 4,4a-double bond % e : 10,4a-double bond % f : 10,10a-double bond % g : 5,10a-double bond % h : 5,6-double bond % i : 6,7-double bond % j : 8,7-double bond % k : 8,8a-double bond % l : 9,8a-double bond % m : 9,9a-double bond % n : 1,9a-double bond % o : 4a,9a-double bond % O : 4a,9a-double bond in the other ring % p : 10a,8a-double bond % P : 10a,8a-double bond in the other ring % A : right aromatic circle % B : central aromatic circle % C : left aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 10 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % % for 11 (fused positions, 9a and 4a) % % 11FA : alpha single bond at 9a % 11FB : beta single bond at 9a % 11FU : unspecified single bond at 9a % 11GA : alpha single bond at 4a % 11GB : beta single bond at 4a % 11GU : unspecified single bond at 4a % \end{verbatim} % % \begin{verbatim} % % for 12 (fused positions, 8a and 10a) % % 12FA : alpha single bond at 8a % 12FB : beta single bond at 8a % 12FU : unspecified single bond at 8a % 12GA : alpha single bond at 10a % 12GB : beta single bond at 10a % 12GU : unspecified single bond at 10a % \end{verbatim} % % \begin{verbatim} % e.g. % % \hanthracenev{1==Cl;2==F;{{10}}==OH} % \hanthracenev[c]{1==Cl;4==F;2==CH$_{3}$; % {{11}FA}==OH;{{11}FB}==OH} % \hanthracenev[eb]{1D==O;4SA==MeO;4SB==OMe;5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \changes{v1.02}{1998/10/31}{The command \cs{setdecaringv} has % been stopped to use.} % \changes{v1.02}{1998/10/31}{Adding \cs{ylpositionh}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/12/25}{Added: fused rings} % % \begin{macro}{\hanthracenev} % \begin{macrocode} \def\hanthracenev{\@ifnextchar[{\@hanthracenev[@}{\@hanthracenev[r]}} \def\@hanthracenev[#1]#2{% % bonds for outer skeleton \@reset@ylsw\reset@@yl \ylposition{#2}{-7}{0}{2}{0}% %for 8 positions \if@ylsw \ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi \else\ylposition{#2}{-1}{3}{7}{0}% for 5 to 7 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi\else \ylposition{#2}{0}{0}{5}{0}% for 1 to 4 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-684}\def\@@yli{0}\fi\else \ylposition{#2}{-8}{0}{2}{0}%for 9-position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{0}\fi\else \ylposition{#2}{-6}{3}{5}{0}%for 10-position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{0}\fi\else \ylfusedposition{#2}{-11}{-1}{1}{0}% for 9a and 4a \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{0}\fi\else \ylfusedposition{#2}{-12}{-1}{1}{0}% for 8a and 10a \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi\fi \if@ylsw \yl@shiftii=\@ylii \ifx\@@ylii\empty\else \advance\yl@shiftii\@@ylii\fi \yl@shifti=\@yli \ifx\@@yli\empty\else \advance\yl@shifti\@@yli\fi \advance\yl@shiftii\yl@xdiff \advance\yl@shifti\yl@ydiff \begin{sfpicture}(0,0)(-\yl@shiftii,-\yl@shifti)% \reset@yl@xydiff%1999/1/6 by S. Fujita \else \begin{sfpicture}(1200,880)(-\shiftii,-\shifti)% \origptoutput{hanthracenev}% \fi \Put@Line(0,406)(-5,-3){171}% %bond 8-7 \Put@Line(0,406)(5,-3){171}% %bond 8-8a \Put@Line(0,0)(-5,3){171}% %bond 5-6 \Put@Line(0,0)(5,3){171}% %bond 5-10a \Put@Line(171,103)(0,1){200}% %bond 10a-8a \Put@Line(-171,103)(0,1){200}% %bond 6-7 \Put@Line(342,406)(-5,-3){171}% %bond 9-8a \Put@Line(342,406)(5,-3){171}% %bond 9-9a \Put@Line(342,0)(-5,3){171}% %bond 10-10a \Put@Line(342,0)(5,3){171}% %bond 10-4a \Put@Line(513,103)(0,1){200}% %bond 4a-9a %%%% \Put@Line(684,406)(-5,-3){171}% %bond 1-9a 1-6 \Put@Line(684,406)(5,-3){171}% %bond 1-2 1-2 \Put@Line(855,103)(0,1){200}% %bond 3-2 3-2 \Put@Line(684,0)(5,3){171}% %bond 4-3 4-3 \Put@Line(684,0)(-5,3){171}% %bond 4-4a 4-5 % inner double bonds \@tfor\member:=#1\do{% \if\member r%no endcyclic double bonds \else\if\member a% \Put@Line(690,364)(5,-3){126}% %double bond 1-2 \else\if\member b% \Put@Line(822,129)(0,1){148}% %double bond 3-2 \else\if\member c% \Put@Line(690,42)(5,3){126}% %double bond 4-3 \else\if\member d% \Put@Line(690,42)(-5,3){126}% %double bond 4-4a \else\if\member e% \Put@Line(348,42)(5,3){126}% %double bond 10-4a \else\if\member f% \Put@Line(348,42)(-5,3){126}% %double bond 10-10a \else\if\member g% \Put@Line(6,42)(5,3){126}% %double bond 5-10a \else\if\member h% \Put@Line(-6,42)(-5,3){126}% %double bond 5-6 \else\if\member i% \Put@Line(-138,129)(0,1){148}% %double bond 6-7 \else\if\member j% \Put@Line(-6,364)(-5,-3){126}% %double bond 8-7 \else\if\member k% \Put@Line(6,364)(5,-3){126}% %double bond 8-8a \else\if\member l% \Put@Line(348,364)(-5,-3){126}% %double bond 9-8a \else\if\member m% \Put@Line(348,364)(5,-3){126}% %double bond 9-9a \else\if\member n% \Put@Line(690,364)(-5,-3){126}% %double bond 1-9a \else\if\member o% \Put@Line(544,129)(0,1){148}% %double bond 4a-9a \else\if\member O% \Put@Line(482,129)(0,1){148}% %double bond 4a-9a at the other ring \else\if\member p% \Put@Line(138,129)(0,1){148}% %double bond 10a-8a \else\if\member P% \Put@Line(204,129)(0,1){148}% %double bond 10a-8a at the other ring \else\if\member C%left aromatic circle \Put@oCircle(0,203){240}% %circle \else\if\member B%right aromatic circle \Put@oCircle(342,203){240}% %circle \else\if\member A%right aromatic circle \Put@oCircle(684,203){240}% %circle \else %setting fused rings \expandafter\twoCH@R\member//% \set@fusion@hanthrav \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi}% %exocyclic bonds and substituents \global\drawsamesubsttrue%2002/05/30 warning on \Put@Direct(0,0){\setsixringv{#2}{-7}{0}{2}{0}}% %for 8 positions \global\drawsamesubstfalse%2002/05/30 warning off \Put@Direct(0,0){\setsixringv{#2}{-1}{3}{7}{0}}% %for 5 to 7 positions \Put@Direct(684,0){\setsixringv{#2}{0}{0}{5}{0}}% %for 1 to 4 positions \Put@Direct(342,0){\setsixringv{#2}{-8}{0}{2}{0}}%for 9-position \Put@Direct(342,0){\setsixringv{#2}{-6}{3}{5}{0}}%for 10-position %bonds and substituents for fused positions \Put@Direct(0,0){\setfusedbond{#2}{-12}{-1}{1}{0}}% for 8a and 10a \Put@Direct(342,0){\setfusedbond{#2}{-11}{-1}{1}{0}}% for 9a and 4a \end{sfpicture}}% %end of \hanthracenev macro% % \end{macrocode} % \end{macro} % % \subsection{Anthracene and anthraquinone derivatives} % % The macro |\anthracenev| is used for drawing anthracene derivatives % of vertical type. % % The macro |\anthracenev| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \begin{verbatim} % ******************************************** % * anthracene and anthraquinone derivatives * % * (vertical type) * % ******************************************** % % \anthracenev[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % % \begin{verbatim} % OPT (bond pattern) % % none or r : right-handed double bonds % l : left-handed double bonds % A : aromatic circle % % p or pa : 9,10-anthraquinone (A) % pA : 9,10-anthraquinone (circle type) % % o : 1,2-anthraquinone (A) % oa : 1,2-anthraquinone (A') % oA : 1,2-anthraquinone (circle type) % ob : 2,3-antharquinone (B) % oc : 1,2-anthraquinone (C) % % q : 1,4-anthraquinone (A) % qa : 1,4-anthraquinone (A') % qA : 1,4-anthraquinone (circle type) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 10 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % % \anthracenev{1==Cl;2==F;0FA==;0GA==} % \anthracenev[A]{1==Cl;4==F;2==CH$_{3}$} % \anthracenev[eb]{1D==O;4SA==MeO;4SB==OMe;% % 5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \begin{macro}{\anthracenev} % \begin{macrocode} \def\anthracenev{\@ifnextchar[{\@anthracenev}{\@anthracenev[r]}} \def\@anthracenev[#1]#2{% \iforigpt \typeout{command `anthracenev' is % based on `hanthracenev'.}\fi% %% \expandafter\threech@r#1{}{}%error1998/11/23 by Shinsaku Fujita \expandafter\twoCH@R#1//% \if\@tmpa r% right-handed set of double bonds \hanthracenev[acflhjo]{#2}% \else\if\@tmpa l% left-handed set of double bonds \hanthracenev[acehjmp]{#2}% \else\if\@tmpa A%aromatic circle \hanthracenev[ABC]{#2}% \else\if\@tmpa p%9,10-quinone \if\@tmpb a% (A)% \hanthracenev[achjop]{#2}% \else\ifx\@tmpb\empty% (A) \hanthracenev[achjop]{#2}% \else\if\@tmpb A% circle type \hanthracenev[AC]{#2}% \else \hanthracenev[achjop]{#2}% \fi\fi\fi% \else\if\@tmpa o%o-quinone \if\@tmpb a% (A)% \hanthracenev[cfjhlo]{#2}% \else\ifx\@tmpb\empty% (A) \hanthracenev[cehjmp]{#2}% \else\if\@tmpb b% (B) \hanthracenev[dfhjln]{#2}% \else\if\@tmpb c% (C) \hanthracenev[aehjmp]{#2}% \else\if\@tmpb A% cicle type \hanthracenev[cBC]{#2}% \fi\fi\fi\fi\fi% \else\if\@tmpa q%1,4-quinone \if\@tmpb a% (A)% \hanthracenev[bfhjlo]{#2}% \else\ifx\@tmpb\empty% (A) \hanthracenev[behjmp]{#2}% \else\if\@tmpb A% circle type \hanthracenev[bBC]{#2}% \else% \hanthracenev[behjmp]{#2}% \fi\fi\fi% \else \hanthracenev[@#1]{#2}% \fi\fi\fi\fi\fi\fi% }% %end of \anthracenev macro% % \end{macrocode} % \end{macro} % % \section{Phenanthrene derivatives} % \subsection{Perhydro-phenanthrene derivatives of Vertical type} % % The macro |\hphenanthrenev| is used for drawing perhydrophenanthrene % derivatives of vertical type. % % The macro |\hphenanthrenev| has an argument |SUBSLIST| as well as an % optional argument |BONDLIST|. % % \begin{verbatim} % ************************************* % * perhydro phenanthrene derivatives * % * (vertical type) * % ************************************* % % \hphenanthrenev[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to p, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A, B, or C indicates an aromatic bond % pattern (circle). % \changes{v1.02}{1998/10/14}{BONDLIST: o, O, p and P at the fused bond} % % \begin{verbatim} % % BONDLIST = % % none : hphenanthrene % a : 1,2-double bond % b : 2,3-double bond % c : 3,4-double bond % d : 4,4a-double bond % e : 4a,4b-double bond % f : 4b,5-double bond % g : 5,6-double bond % h : 6,7-double bond % i : 7,8-double bond % j : 8,8a-double bond % k : 8a,9-double bond % l : 9,10-double bond % m : 10,10a-double bond % n : 1,10a-double bond % o : 4a,10a-double bond % O : 4a,10a-double bond in the other ring % p : 4b,8a-double bond % P : 4b,8a-double bond in the other ring % A : right aromatic circle % B : central aromatic circle % C : left aromatic circle % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 10 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % % for 11 (fused positions, 4a and 10a) % % 11FA : alpha single bond at 4a % 11FB : beta single bond at 4a % 11FC : alpha single bond (downward) at 4a % 11FD : beta single bond (downward) at 4a % 11FU : unspecified single bond at 4a % 11GA : alpha single bond at 10a % 11GB : beta single bond at 10a % 11FC : alpha single bond (upward) at 10a % 11FD : beta single bond (upward) at 10a % 11GU : unspecified single bond at 10a % % for 12 (fused positions, 4b and 8a) % % 12FA : alpha single bond at 4b % 12FB : beta single bond at 4b % 12FU : unspecified single bond at 4b % 12GA : alpha single bond at 8a % 12GB : beta single bond at 8a % 12GU : unspecified single bond at 8a % \end{verbatim} % % \begin{verbatim} % e.g. % % \hphenanthrenev{1==Cl;2==F;{{10}}==OH} % \hphenanthrenev[c]{1==Cl;4==F;2==CH$_{3}$; % {{11}FA}==OH;{{11}FB}==OH} % \hphenanthrenev[eb]{1D==O;4SA==MeO;4SB==OMe; % 5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % \changes{v1.02}{1998/10/15}{The command \cs{setdecaringv} has % been stopped to use.} % \changes{v1.02}{1998/10/31}{Adding \cs{ylpositionh}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v2.00}{1998/11/23}{Added: Fused rings} % % \begin{macro}{\hphenanthrenev} % \begin{macrocode} \def\hphenanthrenev{% \@ifnextchar[{\@hphenanthrenev[@}{\@hphenanthrenev[r]}} \def\@hphenanthrenev[#1]#2{% % bonds for outer skeleton \@reset@ylsw\reset@@yl \ylposition{#2}{-4}{0}{2}{0}% %for 5 position \if@ylsw \ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi \else \ylposition{#2}{12}{3}{7}{-1}% %for 6 to 8 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi\else \ylposition{#2}{13}{2}{5}{-1}% %for 9 to 10 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{0}\fi\else \ylposition{#2}{4}{0}{4}{-1}% %for 1 to 3 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-513}\def\@@yli{-303}\fi\else \ylposition{#2}{2}{5}{7}{0}% %for 4-position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-513}\def\@@yli{-303}\fi\else \ylfusedposition{#2}{-12}{-1}{1}{0}% % for 4b and 8a \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi\else \ylfusedposition{#2}{-10}{0}{2}{0}% % for 4a and 10a \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{0}\fi\fi \if@ylsw \yl@shiftii=\@ylii \ifx\@@ylii\empty\else \advance\yl@shiftii\@@ylii\fi \yl@shifti=\@yli \ifx\@@yli\empty\else \advance\yl@shifti\@@yli\fi \advance\yl@shiftii\yl@xdiff \advance\yl@shifti\yl@ydiff \begin{sfpicture}(0,0)(-\yl@shiftii,-\yl@shifti) \reset@yl@xydiff%1999/1/6 by S. Fujita \else \begin{sfpicture}(1200,1200)(-\shiftii,-\shifti) \origptoutput{hphenanthrenev}% \fi \Put@Line(0,406)(-5,-3){171}% %bond 6-5 \Put@Line(0,406)(5,-3){171}% %bond 5-4a \Put@Line(0,0)(-5,3){171}% %bond 8-7 \Put@Line(0,0)(5,3){171}% %bond 8-8a \Put@Line(171,103)(0,1){200}% %bond 8a-4b \Put@Line(-171,103)(0,1){200}% %bond 7-6 \Put@Line(342,406)(-5,-3){171}% %bond 4a-4b \Put@Line(342,406)(5,-3){171}% %bond 4a-10a \Put@Line(342,0)(-5,3){171}% %bond 9-8a \Put@Line(342,0)(5,3){171}% %bond 9-10 \Put@Line(513,103)(0,1){200}% %bond 10-10a %%%% \Put@Line(342,406)(0,1){200}% %bond 4a-4 \Put@Line(513,709)(-5,-3){171}% %bond 3-4 \Put@Line(513,709)(5,-3){171}% %bond 3-2 \Put@Line(684,406)(0,1){200}% %bond 1-2 \Put@Line(513,303)(5,3){171}% %bond 10a-1 % inner double bonds \@tfor\member:=#1\do{% \if\member r%no endcyclic double bonds \else\if\member a% \Put@Line(651,432)(0,1){148}% %double bond 1-2 \else\if\member b% \Put@Line(519,667)(5,-3){126}% %double bond 3-2 \else\if\member c% \Put@Line(519,667)(-5,-3){126}% %double bond 3-4 \else\if\member d% \Put@Line(375,432)(0,1){148}% %double bond 4a-4 \else\if\member e% \Put@Line(348,364)(-5,-3){126}% %double bond 4a-4b \else\if\member f% \Put@Line(6,364)(5,-3){126}% %double bond 5-4b \else\if\member g% \Put@Line(-6,364)(-5,-3){126}% %double bond 5-6 \else\if\member h% \Put@Line(-138,129)(0,1){148}% %double bond 6-7 \else\if\member i% \Put@Line(-6,42)(-5,3){126}% %double bond 8-7 \else\if\member j% \Put@Line(6,42)(5,3){126}% %double bond 8-8a \else\if\member k% \Put@Line(348,42)(-5,3){126}% %double bond 9-8a \else\if\member l% \Put@Line(348,42)(5,3){126}% %double bond 9-10 \else\if\member m% \Put@Line(482,129)(0,1){148}% %double bond 10-10a \else\if\member n% \Put@Line(519,345)(5,3){126}% %double bond 10a-1 \else\if\member o% \Put@Line(507,345)(-5,3){126}% %double bond 10a-4a \else\if\member O% \Put@Line(348,364)(5,-3){126}% %double bond 4a-10a \else\if\member p% \Put@Line(138,129)(0,1){148}% %double bond 8a-4b \else\if\member P% \Put@Line(204,129)(0,1){148}% %double bond 8a-4b \else\if\member C%left aromatic circle \Put@oCircle(0,203){240}% %circle \else\if\member B%right aromatic circle \Put@oCircle(342,203){240}% %circle \else\if\member A%right aromatic circle \Put@oCircle(513,506){240}% %circle \else % setting fused rings \expandafter\twoCH@R\member//% \set@fusion@hphenanv \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi}% %exocyclic bonds and substituents \global\drawsamesubsttrue%2002/05/30 warning on \Put@Direct(0,0){\setsixringv{#2}{-4}{0}{2}{0}}% %for 5 position \global\drawsamesubstfalse%2002/05/30 warning off \Put@Direct(0,0){\setsixringv{#2}{12}{3}{7}{-1}}% %for 6 to 8 positions \Put@Direct(342,0){\setsixringv{#2}{13}{2}{5}{-1}}% %for 9 to 10 positions \Put@Direct(513,303){\setsixringv{#2}{4}{0}{4}{-1}}% %for 1 to 3 positions \Put@Direct(513,303){\setsixringv{#2}{2}{5}{7}{0}}% %for 4-position %bonds and substituents for fused positions \Put@Direct(0,0){\setfusedbond{#2}{-12}{-1}{1}{0}}% % for 4b and 8a \Put@Direct(342,0){\setfusedbond{#2}{-10}{0}{2}{0}}% % for 4a and 10a \end{sfpicture}}% %end of \hphenanthrenev macro% % \end{macrocode} % \end{macro} % % \subsection{Phenanthrene and phenanthroquinone derivatives} % % The macro |\phenanthrenev| is used for drawing phenanthrene derivatives % of vertical type. % % The macro |\anthracenev| has an argument |SUBSLIST| as well as an optional % argument |OPT|. The latter designates a bond pattern in place of % individual exocyclic bonds. % % \begin{verbatim} % ********************************* % * phenanthrene and derivatives * % * (vertical type) * % ********************************* % % \phenanthrenev[OPT]{SUBSLIST} % \end{verbatim} % % The |OPT| argument contains one or two characters for designate % aromatic bond patterns or for naphthoquinone bond patterns. % % \begin{verbatim} % OPT (bond pattern) % % none or r : right-handed double bonds % A : aromatic circle % % p or pa : 1,4-quinone (A) % pA : 1,4-quinone (circle type) % % o or oa : 1,2-quinone (A) % oA : 1,2-quinone (circle type) % ob : 2,3-quinone (B) % oc : 3,4-anthraquinone (C) % % q or qa : 9,10-quinone % qA : 9,10-quinone (circle type) % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 10 % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom % nB : beta single bond at n-atom % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % \begin{verbatim} % e.g. % % \phenanthrenev{1==Cl;2==F} % \phenanthrenev[A]{1==Cl;4==F;2==CH$_{3}$} % \phenanthrenev[eb]{1D==O;4SA==MeO;4SB==OMe;% % 5W==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % % \begin{macro}{\phenanthrenev} % \begin{macrocode} \def\phenanthrenev{\@ifnextchar[{\@phenanthrenev}{\@phenanthrenev[r]}} \def\@phenanthrenev[#1]#2{% \iforigpt \typeout{command `phenanthrenev' is % based on `hphenantherenv'.}\fi% \expandafter\threech@r#1{}{}% \if\@tmpa r% right-handed set of double bonds \hphenanthrenev[acgilop]{#2}% \else\if\@tmpa A%aromatic circle \hphenanthrenev[ABC]{#2}% \else\if\@tmpa p%1,4-quinone \if\@tmpb a% (A)% \hphenanthrenev[bgilop]{#2}% \else\ifx\@tmpb\empty% (A) \hphenanthrenev[bgilop]{#2}% \else\if\@tmpb A% circle type \hphenanthrenev[BCb]{#2}% \else \hphenanthrenev[bgilop]{#2}% \fi\fi\fi% \else\if\@tmpa o%o-quinone \if\@tmpb a% (A)% \hphenanthrenev[cgilop]{#2}% \else\ifx\@tmpb\empty% (A) \hphenanthrenev[cgilop]{#2}% \else\if\@tmpb b% (B) \hphenanthrenev[dgilnp]{#2}% \else\if\@tmpb c% (C) \hphenanthrenev[agilop]{#2}% \else\if\@tmpb A% cicle type \hphenanthrenev[cBC]{#2}% \fi\fi\fi\fi\fi% \else\if\@tmpa q%9,10-quinone \if\@tmpb a% (A)% \hphenanthrenev[acgiop]{#2}% \else\ifx\@tmpb\empty% (A) \hphenanthrenev[acgiop]{#2}% \else\if\@tmpb A% circle type \hphenanthrenev[AC]{#2}% \else \hphenanthrenev[acgiop]{#2}% \fi\fi\fi% \else \hphenanthrenev[@#1]{#2}% \fi\fi\fi\fi\fi% }% %end of \phenanthrenev macro% % \end{macrocode} % \end{macro} % % \section{Steroids} % \subsection{Steroids without a chain} % % The macro |\steroid| is used for drawing steroids. % % The macro |\steroid| has an argument |SUBSLIST| as well as an % optional argument |BONDLIST|. % % \begin{verbatim} % *********************** % * steroid derivatives * % *********************** % % \steroid[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to t, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A, B, or C indicates an aromatic bond % pattern (circle). % \changes{v1.02}{1998/10/15}{BONDLIST: k, K, h, H, o and O % at the fused bond} % % \begin{verbatim} % BONDLIST = % % none: steroid skeleton % a : 1,2-double bond b : 2,3-double bond % c : 3,4-double bond d : 4,5-double bond % e : 6,5-double bond f : 6,7-double bond % g : 7,8-double bond % h : 9,8-double bond % h : 9,8-double bond in the other bond % i : 9,10-double bond j : 1,10-double bond % k : 5,10-double bond % K : 5,10-double bond in the other bond % l : 9,11-double bond % m : 12,11-double bond n : 12,13-double bond % o : 14,13-double bond % O : 14,13-double bond in the other bond % p : 8,14-double bond % q : 14,15-double bond r : 15,16-double bond % s : 17,16-double bond t : 17,13-double bond % A : aromatic A ring B : aromatic B ring % C : aromatic C ring % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % % SUBSLIST: list of substituents % % for n = 1 to 17 (execpt fused positions) % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom (boldface) % nB : beta single bond at n-atom (dotted line) % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % For numbers larger than 9 (two digits), you should designate % the SUBSLIST as % % \begin{verbatim} % {{11}A}==Cl;{{12}SA}==H;{{12}SB}==Cl; % \end{verbatim} % % \begin{verbatim} % for n = 5,8,9,10,13 and 14 (fused positions) % % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom (boldface) % nB : beta single bond at n-atom (dotted line) % nU : unspecified single bond at n-atom % \end{verbatim} % % \begin{verbatim} % e.g. % % \steroid{1==Cl;2==F;{{10}}==OH} % \steroid[c]{1==Cl;4==F;2==CH$_{3}$; % {{11}SA}==OH;{{11}SB}==OH} % \steroid[eb]{1D==O;4SA==MeO;4SB==OMe; % 5==Cl;6==Cl;7==Cl;8==Cl} % \end{verbatim} % \changes{v1.02}{1998/10/15}{The command \cs{setdecaringv} has % been stopped to use.} % \changes{v1.02}{1998/10/31}{Adding \cs{ylpositionh}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v1.02}{1998/10/31}{Inner commands \cs{yl@steroidposition} % and \cs{@steroidskeleton} are separated from the \cs{@steroid} command.} % \changes{v2.00}{1998/12/5}{Add: fused rings} % % \begin{macro}{\steroid} % \begin{macro}{\yl@steroidposition} % \begin{macro}{\@steroidskeleton} % \begin{macrocode} \def\steroid{\@ifnextchar[{\@steroid[@}{\@steroid[Z]}} \def\@steroid[#1]#2{% %initialize bug fix 2010/10/01 \iniatom\iniflag%initialize % bonds for outer skeleton \@reset@ylsw\reset@@yl \yl@steroidposition{#2}% \if@ylsw \yl@shiftii=\@ylii \ifx\@@ylii\empty\else \advance\yl@shiftii\@@ylii\fi \yl@shifti=\@yli \ifx\@@yli\empty\else \advance\yl@shifti\@@yli\fi \advance\yl@shiftii\yl@xdiff \advance\yl@shifti\yl@ydiff \begin{sfpicture}(0,0)(-\yl@shiftii,-\yl@shifti) \reset@yl@xydiff%1999/1/6 by S. Fujita \else \begin{sfpicture}(1600,1300)(-\shiftii,-\shifti) \origptoutput{steroid}% \fi \Put@Direct(0,0){\@steroidskeleton{#1}{#2}}% \end{sfpicture}}% %end of \steroid macro% % \end{macrocode} % % The |\yl@steroidposition| is derived from |\ylposition| and % |\ylatombondposition| to use in the |\steroid| command as well as % in the |\steroidchain| command. % \changes{v1.02}{1998/10/31}{Inner commands \cs{yl@steroidposition} % and \cs{@steroidskeleton} are separated from the \cs{@steroid} command.} % % \begin{macrocode} \def\yl@steroidposition#1{% \ylposition{#1}{0}{0}{2}{0}% %for 1 \if@ylsw \ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi \else \ylposition{#1}{8}{3}{7}{-1}% %for 2 to 4 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{0}\def\@@yli{0}\fi\else \ylposition{#1}{10}{2}{5}{-1}% %for 6 to 7 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{0}\fi\else \ylposition{#1}{-11}{0}{2}{0}%for 12 position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-513}\def\@@yli{-303}\fi\else \ylposition{#1}{-5}{5}{7}{0}% %for 11 position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-513}\def\@@yli{-303}\fi\else \ylposition{#1}{18}{0}{4}{-1}%for 15 to 17 positions \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-855}\def\@@yli{-303}\fi\else \ylatombondposition{#1}{-4}{7}% % for 5 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-171}\def\@@yli{-103}\fi\else \ylatombondposition{#1}{-9}{1}% % for 10 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-171}\def\@@yli{-303}\fi\else \ylatombondposition{#1}{-7}{1}% % for 8 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-513}\def\@@yli{-303}\fi\else \ylatombondposition{#1}{-8}{7}% % for 9 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-342}\def\@@yli{-406}\fi\else \ylatombondposition{#1}{-13}{7}% % for 14 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-684}\def\@@yli{-406}\fi\else \ylatombondposition{#1}{-12}{1}% % for 13 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-684}\def\@@yli{-606}\fi\fi% }% end of \yl@steroidposition % \end{macrocode} % % The |\@steroidskeleton| is separated from the definition of |\steroid| % so as to be used also in the definition of |\steroidchain|. % \changes{v1.02}{1998/10/31}{Inner commands \cs{yl@steroidposition} % and \cs{@steroidskeleton} are separated from the \cs{@steroid} command.} % \changes{v2.00}{1998/11/23}{Added: fused rings} % % \begin{macrocode} \def\@steroidskeleton#1#2{% \Put@Line(0,406)(-5,-3){171}% %bond 1-2 \Put@Line(0,406)(5,-3){171}% %bond 1-10 \Put@Line(0,0)(-5,3){171}% %bond 4-3 \Put@Line(0,0)(5,3){171}% %bond 4-5 \Put@Line(171,103)(0,1){200}% %bond 5-10 \Put@Line(-171,103)(0,1){200}% %bond 3-2 \Put@Line(342,406)(-5,-3){171}% %bond 9-10 \Put@Line(342,406)(5,-3){171}% %bond 9-8 \Put@Line(342,0)(-5,3){171}% %bond 6-5 \Put@Line(342,0)(5,3){171}% %bond 6-7 \Put@Line(513,103)(0,1){200}% %bond 7-8 %%%% \Put@Line(342,406)(0,1){200}% %bond 9-11 \Put@Line(513,709)(-5,-3){171}% %bond 12-11 \Put@Line(513,709)(5,-3){171}% %bond 12-13 \Put@Line(684,406)(0,1){200}% %bond 14-13 \Put@Line(513,303)(5,3){171}% %bond 8-14 %%%% \Put@Line(855,709)(-5,-3){171}% %bond 17-13 \Put@Line(855,709)(5,-3){171}% %bond 17-16 \Put@Line(1026,406)(0,1){200}% %bond 15-16 \Put@Line(684,406)(1,0){342}% %bond 14-15 % inner double bonds \@tfor\member:=#1\do{% \if\member Z%no endcyclic double bonds \else\if\member a% \Put@Line(-6,364)(-5,-3){126}% %double bond 1-2 5-6 \else\if\member b% \Put@Line(-138,129)(0,1){148}% %double bond 3-2 6-7 \else\if\member c% \Put@Line(-6,42)(-5,3){126}% %double bond 4-3 8-7 \else\if\member d% \Put@Line(6,42)(5,3){126}% %double bond 4-5 8-8a \else\if\member e% \Put@Line(348,42)(-5,3){126}% %double bond 6-5 9-8a \else\if\member f% \Put@Line(348,42)(5,3){126}% %double bond 6-7 9-10 \else\if\member g% \Put@Line(482,129)(0,1){148}% %double bond 7-8 10-10a \else\if\member h% \Put@Line(507,345)(-5,3){126}% %double bond 8-9 10a-4a \else\if\member H% \Put@Line(348,364)(5,-3){126}% %double bond 9-8 4a-10a \else\if\member i% \Put@Line(348,364)(-5,-3){126}% %double bond 9-10 4a-4b \else\if\member j% \Put@Line(6,364)(5,-3){126}% %double bond 1-10 5-4b \else\if\member k% \Put@Line(138,129)(0,1){148}% %double bond 5-10 8a-4b \else\if\member K% \Put@Line(204,129)(0,1){148}% %double bond 5-10 8a-4b \else\if\member l% \Put@Line(375,432)(0,1){148}% %double bond 9-11 4-5 \else\if\member m% \Put@Line(519,667)(-5,-3){126}% %double bond 12-11 3-4 \else\if\member n% \Put@Line(519,667)(5,-3){126}% %double bond 12-13 3-2 \else\if\member o% \Put@Line(651,432)(0,1){148}% %double bond 13-14 1-2 \else\if\member O% \Put@Line(717,432)(0,1){148}% %double bond 13-14 1-2 \else\if\member p% \Put@Line(519,345)(5,3){126}% %double bond 8-14 10a-1 \else\if\member q% \Put@Line(720,439)(1,0){260}% %double bond 14-15 \else\if\member r% \Put@Line(993,432)(0,1){148}% %double bond 15-16 1-2 \else\if\member s% \Put@Line(861,667)(5,-3){126}% %double bond 17-16 3-2 \else\if\member t% \Put@Line(861,667)(-5,-3){126}% %double bond 17-13 3-4 \else\if\member A%left aromatic circle \Put@oCircle(0,203){240}% %circle \else\if\member B%right aromatic circle \Put@oCircle(342,203){240}% %circle \else\if\member C%right aromatic circle \Put@oCircle(513,506){240}% %circle \else % setting fused rings \expandafter\twoCH@R\member//% \set@fusion@steroid \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi% \fi\fi\fi\fi\fi\fi\fi\fi\fi}% %exocyclic bonds and substituents \iniflag \global\drawsamesubsttrue%2002/05/30 warning on \Put@Direct(0,0){\setsixringv{#2}{0}{0}{2}{0}}% %for 1 \global\drawsamesubstfalse%2002/05/30 warning off \Put@Direct(0,0){\setsixringv{#2}{8}{3}{7}{-1}}% %for 2 to 4 positions \Put@Direct(342,0){\setsixringv{#2}{10}{2}{5}{-1}}% %for 6 to 7 positions \Put@Direct(513,303){\setsixringv{#2}{-11}{0}{2}{0}}%for 12 position \Put@Direct(513,303){\setsixringv{#2}{-5}{5}{7}{0}}% %for 11 position \Put@Direct(855,303){\setsixringv{#2}{18}{0}{4}{-1}}%for 15 to 17 positions %bonds and substituents for fused positions \Put@Direct(171,103){\setatombond{#2}{-4}{7}}% % for 5 \Put@Direct(171,303){\setatombond{#2}{-9}{1}}% % for 10 \Put@Direct(513,303){\setatombond{#2}{-7}{1}}% % for 8 \Put@Direct(342,406){\setatombond{#2}{-8}{7}}% % for 9 \Put@Direct(684,406){\setatombond{#2}{-13}{7}}% % for 14 \Put@Direct(684,606){\setatombond{#2}{-12}{1}}% % for 13 }% end of \@steroidskeleton % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % The macro |\set@fusion@steroid| is an inner command contained % in the definition of |\steroidskeleton|, where % the macro is used for setting an additive % or a fused ring at each bond (designated by |\@@tmpa|). The % fused ring is typeset by the inner command |\set@fusionadd@sixv|. % % \begin{macro}{\set@fusion@steroid} % \changes{v2.00}{1998/11/23}{New command: \cs{set@fusion@steroid}} % \begin{macrocode} \def\set@fusion@steroid{% \let\@@tmpa=\@tmpa \let\@@tmpb=\@tmpb \if\@tmpa a% \edef\@@tmpa{f}% \Put@Direct(0,0){\set@fusionadd@sixv}% \else\if\@tmpa A% \edef\@@tmpa{F}% \Put@Direct(0,0){\set@fusionadd@sixv}% \else\if\@tmpa b% \edef\@@tmpa{e}% \Put@Direct(0,0){\set@fusionadd@sixv}% \else\if\@tmpa B% \edef\@@tmpa{E}% \Put@Direct(0,0){\set@fusionadd@sixv}% \else\if\@tmpa c% \edef\@@tmpa{d}% \Put@Direct(0,0){\set@fusionadd@sixv}% \else\if\@tmpa C% \edef\@@tmpa{D}% \Put@Direct(0,0){\set@fusionadd@sixv}% \else\if\@tmpa d% \edef\@@tmpa{c}% \Put@Direct(0,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `d'}% \fi \else\if\@tmpa D% \edef\@@tmpa{C}% \Put@Direct(0,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `D'}% \fi \else\if\@tmpa e% \edef\@@tmpa{d}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `e'}% \fi \else\if\@tmpa E% \edef\@@tmpa{D}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `E'}% \fi \else\if\@tmpa f% \edef\@@tmpa{c}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `f'}% \fi \else\if\@tmpa F% \edef\@@tmpa{C}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `f'}% \fi \else\if\@tmpa g% \edef\@@tmpa{b}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `g'}% \fi \else\if\@tmpa G% \edef\@@tmpa{B}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `g'}% \fi \else\if\@tmpa h% \edef\@@tmpa{a}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Forbidden Fusion for bond `h'}% \fi \else\if\@tmpa H% \edef\@@tmpa{A}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Forbidden Fusion for bond `H'}% \fi \else\if\@tmpa i% \edef\@@tmpa{f}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `i'}% \fi \else\if\@tmpa I% \edef\@@tmpa{F}% \Put@Direct(342,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `I'}% \fi \else\if\@tmpa j% \edef\@@tmpa{a}% \Put@Direct(0,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `j'}% \fi \else\if\@tmpa J% \edef\@@tmpa{A}% \Put@Direct(0,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `J'}% \fi \else\if\@tmpa k% \edef\@@tmpa{b}% \Put@Direct(0,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Forbidden Fusion for bond `k'}% \fi \else\if\@tmpa K% \edef\@@tmpa{B}% \Put@Direct(0,0){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Forbidden Fusion for bond `K'}% \fi \else\if\@tmpa l% \edef\@@tmpa{e}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `l'}% \fi \else\if\@tmpa L% \edef\@@tmpa{E}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `L'}% \fi \else\if\@tmpa m% \edef\@@tmpa{f}% \Put@Direct(513,303){\set@fusionadd@sixv}% \else\if\@tmpa M% \edef\@@tmpa{F}% \Put@Direct(513,303){\set@fusionadd@sixv}% \else\if\@tmpa n% \edef\@@tmpa{a}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `n'}% \fi \else\if\@tmpa N% \edef\@@tmpa{A}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `N'}% \fi \else\if\@tmpa o% \edef\@@tmpa{b}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Forbidden Fusion for bond `o'}% \fi \else\if\@tmpa O% \edef\@@tmpa{B}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Forbidden Fusion for bond `O'}% \fi \else\if\@tmpa p% \edef\@@tmpa{c}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `N'}% \fi \else\if\@tmpa P% \edef\@@tmpa{C}% \Put@Direct(513,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `N'}% \fi \else\if\@tmpa q% \XyMTeXWarning{Mismatched dimension for bond `q'}% \else\if\@tmpa Q% \XyMTeXWarning{Mismatched dimension for bond `Q'}% \else\if\@tmpa r% \edef\@@tmpa{b}% \Put@Direct(855,303){\set@fusionadd@sixv}% \else\if\@tmpa R% \edef\@@tmpa{B}% \Put@Direct(855,303){\set@fusionadd@sixv}% \else\if\@tmpa s% \edef\@@tmpa{a}% \Put@Direct(855,303){\set@fusionadd@sixv}% \else\if\@tmpa S% \edef\@@tmpa{A}% \Put@Direct(855,303){\set@fusionadd@sixv}% \else\if\@tmpa t% \edef\@@tmpa{f}% \Put@Direct(855,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `t'}% \fi \else\if\@tmpa T% \edef\@@tmpa{F}% \Put@Direct(855,303){\set@fusionadd@sixv}% \if@smallringsw\else \XyMTeXWarning{Unfavorable Fusion for bond `T'}% \fi \fi\fi\fi\fi\fi\fi\fi\fi% \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi% \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi% \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi% }% end of the macro \set@fusion@steroid % \end{macrocode} % \end{macro} % % \subsection{Steroids with a chain} % % The macro |\steroidchain| is used for drawing steroids. % % The macro |\steroidchain| has an argument |SUBSLIST| as well as an % optional argument |BONDLIST|. % % \begin{verbatim} % ************************************** % * steroid derivatives having a chain * % ************************************** % % \steroidchain[BONDLIST]{SUBSLIST} % \end{verbatim} % % The |BONDLIST| argument contains one or more % characters selected form a to t, each of which indicates % the presence of an inner (endcyclic) double bond on the corresponding % position. The character A, B, or C indicates an aromatic bond % pattern (circle). A two-character string `Z?' indicates % a double bond in the side-chain. % % \begin{verbatim} % BONDLIST = % % (double bonds for the steroid skeleton) % none: no action on the steroid skeleton % a : 1,2-double bond b : 2,3-double bond % c : 3,4-double bond d : 4,5-double bond % e : 6,5-double bond f : 6,7-double bond % g : 7,8-double bond h : 9,8-double bond % i : 9,10-double bond j : 1,10-double bond % k : 5,10-double bond l : 9,11-double bond % m : 12,11-double bond n : 12,13-double bond % o : 14,13-double bond p : 8,14-double bond % q : 14,15-double bond r : 15,16-double bond % s : 17,16-double bond t : 17,13-double bond % A : aromatic A ring B : aromatic B ring % C : aromatic C ring % \end{verbatim} % % \begin{verbatim} % (double bonds for the side chain) % Z : no action % Za : 17,20-double bond Zb : 20,22-double bond % Zc : 22,23-double bond Zd : 23,24-double bond % Ze : 24,25-double bond Zf : 25,26-double bond % Zg : 25,27-double bond % \end{verbatim} % % For a two-character indicator, you should write the BONDLIST % as, e.g. % % \begin{verbatim} % [b{Za}{Zc}...] % \end{verbatim} % % The |SUBSLIST| argument contains one or more substitution descriptors % which are separated from each other by a semicolon. Each substitution % descriptor has a locant number with a bond modifier and a substituent, % where these are separated with a double equality symbol. % % \begin{verbatim} % SUBSLIST: list of substituents % % for n = 1 to 24 (execpt fused positions) % % nD : exocyclic double bond at n-atom % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom (boldface) % nB : beta single bond at n-atom (dotted line) % nSA : alpha single bond at n-atom (boldface) % nSB : beta single bond at n-atom (dotted line) % nSa : alpha (not specified) single bond at n-atom % nSb : beta (not specified) single bond at n-atom % % nSd : alpha single bond at n-atom (dotted line) % with an alternative direction to nSA % nSu : beta single bond at n-atom (boldface) % with an alternative direction to nSB % nFA : alpha single bond at n-atom (dotted line) % for ring fusion % nFB : beta single bond at n-atom (boldface) % for ring fusion % nGA : alpha single bond at n-atom (dotted line) % for the other ring fusion % nGB : beta single bond at n-atom (boldface) % for the other ring fusion % \end{verbatim} % % For numbers larger than 9 (two digits), you should designate % the SUBSLIST as % % \begin{verbatim} % {{11}A}==Cl;{{12}SA}==H;{{12}SB}==Cl; ... % \end{verbatim} % % \begin{verbatim} % for n = 5,8,9,10,13,14,and 25 (fused positions etc.) % % n or nS : exocyclic single bond at n-atom % nA : alpha single bond at n-atom (boldface) % nB : beta single bond at n-atom (dotted line) % nU : unspecified single bond at n-atom % \end{verbatim} % % \begin{verbatim} % e.g. % % \steroidchain{1==Cl;2==F;{{10}}==OH} % \steroidchain[c]{1==Cl;4==F;2==CH$_{3}$;% % {{11}SA}==OH;{{11}SB}==OH} % \steroidchain[b]{1D==O;4SA==MeO;4SB==OMe;% % ;6==Cl;7==Cl;11==Cl} % \end{verbatim} % % \changes{v1.02}{1998/10/31}{Adding \cs{ylpositionh}, \cs{if@ylsw} % \cs{ylfusedposition}, % \cs{yl@shiftii}, \cs{@ylii}, \cs{@@ylii}, \cs{yl@shifti}, \cs{@yli}, % \cs{@yli}, \cs{yl@xdiff} and \cs{yl@ydiff}} % \changes{v1.02}{1998/10/31}{The inner commands \cs{yl@steroidposition} % is used. The old \cs{steroid} is replaced by \cs{@steroidskeleton}.} % \changes{v2.00}{1998/11/31}{Add: fused rings} % % \begin{macro}{\steroidchain} % \begin{macrocode} \def\steroidchain{\@ifnextchar[{\@steroidchain[@}{\@steroidchain[Z]}} \def\@steroidchain[#1]#2{% %shift due to the steroid skeleton \@reset@ylsw\reset@@yl \yl@steroidposition{#2}% %shift due to the side chain \ylposition{#2}{-21}{0}{3}{0}%for 22 and 23 positions \if@ylsw \ifx\@@ylii\empty \def\@@ylii{-1026}\def\@@yli{-606}\fi \else \ylposition{#2}{-14}{5}{7}{0}%for 20 position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-1026}\def\@@yli{-606}\fi\else \ylposition{#2}{-20}{3}{5}{0}%for 24 position \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-1197}\def\@@yli{-709}\fi\else \ylatombondposition{#2}{-24}{4}% % for 5 \fi \if@ylsw\ifx\@@ylii\empty \def\@@ylii{-1397}\def\@@yli{-709}\fi\fi \if@ylsw \yl@shiftii=\@ylii \ifx\@@ylii\empty\else \advance\yl@shiftii\@@ylii\fi \yl@shifti=\@yli \ifx\@@yli\empty\else \advance\yl@shifti\@@yli\fi \advance\yl@shiftii\yl@xdiff \advance\yl@shifti\yl@ydiff \begin{sfpicture}(0,0)(-\yl@shiftii,-\yl@shifti)% \reset@yl@xydiff%1999/1/6 by S. Fujita \else \begin{sfpicture}(2000,1500)(-\shiftii,-\shifti)% \iforigpt \typeout{command `steroidchain' is based on `steroid'.}\fi% \fi % steroid skeleton \Put@Direct(0,0){\@steroidskeleton{#1}{#2}}% % bonds for the side chain (carbons 20 to 27 (except 21)) \Put@Line(855,709)(0,1){200}% %bond 17-20 \Put@Line(1026,1012)(-5,-3){171}% %bond 22-20 \Put@Line(1026,1012)(5,-3){171}% %bond 22-23 \Put@Line(1197,709)(0,1){200}% %bond 24-23 \Put@Line(1197,709)(1,0){200}% %bond 24-25 \Put@Line(1397,709)(3,5){103}% %bond 25-26 \Put@Line(1397,709)(3,-5){103}% %bond 25-27 % double bonds along the side chain \@tfor\member:=#1\do{% \expandafter\twoCH@R\member//\relax% \if\@tmpa Z\relax% \ifx\@tmpb\empty%no action \else\if\@tmpb a% \Put@Line(888,735)(0,1){148}% %double bond 17-20 \else\if\@tmpb b% \Put@Line(1020,970)(-5,-3){126}% %double bond 22-20 \else\if\@tmpb c% \Put@Line(1032,970)(5,-3){126}% %double bond 22-23 \else\if\@tmpb d% \Put@Line(1164,735)(0,1){148}% %double bond 24-23 \else\if\@tmpb e% \Put@Line(1233,742)(1,0){140}% %double bond 24-25 \else\if\@tmpb f% \Put@Line(1433,715)(3,5){72}% %double bond 25-26 \else\if\@tmpb g% \Put@Line(1433,697)(3,-5){72}% %double bond 25-27 \fi\fi\fi\fi\fi\fi\fi\fi\fi}% % substitution on the side chain %\global\drawsamesubsttrue%2002/05/30 warning on \Put@Direct(1026,606){\setsixringv{#2}{-21}{0}{3}{0}}%for 22 and 23 positions %\global\drawsamesubstfalse%2002/05/30 warning off \Put@Direct(1026,606){\setsixringv{#2}{-14}{5}{7}{0}}%for 20 position \Put@Direct(1197,709){\setsixringv{#2}{-20}{3}{5}{0}}%for 24 position \Put@Direct(1397,709){\setatombond{#2}{-24}{4}}% % for 5 \end{sfpicture}}% %end of \steroidchain macro% % % \end{macrocode} % \end{macro} % % \Finale % \endinput