
Package ‘vaultr’
August 22, 2022

Title Vault Client for Secrets and Sensitive Data

Version 1.1.1

Description Provides an interface to a 'HashiCorp' vault server over
its http API (typically these are self-hosted; see
<https://www.vaultproject.io>). This allows for secure storage and
retrieval of secrets over a network, such as tokens, passwords and
certificates. Authentication with vault is supported through
several backends including user name/password and authentication via
'GitHub'.

License MIT + file LICENSE

URL https://github.com/vimc/vaultr,

https://www.vaccineimpact.org/vaultr/

BugReports https://github.com/vimc/vaultr/issues

SystemRequirements vault

Imports R6, getPass, httr, jsonlite

Suggests knitr, mockery, processx, rmarkdown, testthat, withr

RoxygenNote 7.2.1

Encoding UTF-8

VignetteBuilder knitr

Language en-GB

NeedsCompilation no

Author Rich FitzJohn [aut, cre],
Robert Ashton [aut],
Wes Hinsley [aut],
Imperial College of Science, Technology and Medicine [cph]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

Repository CRAN

Date/Publication 2022-08-22 11:30:02 UTC

1

https://www.vaultproject.io
https://github.com/vimc/vaultr
https://www.vaccineimpact.org/vaultr/
https://github.com/vimc/vaultr/issues

2 vaultr

R topics documented:
vaultr . 2
vault_api_client . 3
vault_client . 6
vault_client_audit . 11
vault_client_auth . 13
vault_client_auth_approle . 15
vault_client_auth_github . 20
vault_client_auth_userpass . 22
vault_client_cubbyhole . 25
vault_client_kv1 . 27
vault_client_kv2 . 30
vault_client_object . 34
vault_client_operator . 35
vault_client_policy . 38
vault_client_secrets . 40
vault_client_token . 42
vault_client_tools . 50
vault_client_transit . 52
vault_resolve_secrets . 61
vault_test_server . 63

Index 67

vaultr Vault Client for Secrets and Sensitive Data

Description

Vault client for secrets and sensitive data; this package provides wrappers for HashiCorp’s vault
server. The package wraps most of the high-level API, and includes support for authentication
via a number of backends (tokens, username and password, github, and "AppRole"), as well as
a number of secrets engines (two key-value stores, vault’s cubbyhole and the transit backend for
encryption-as-a-service).

Details

To get started, you might want to start with the "vaultr" vignette, available from the package with
vignette("vaultr").

The basic design of the package is that it has very few entrypoints - for most uses one will interact
almost entirely with the vault_client function. That function returns an R6 object with several
methods (functions) but also several objects that themselves contain more methods and objects,
creating a nested tree of functionality.

From any object, online help is available via the help method, for example

client <- vaultr::vault_client()
client$secrets$transit$help()

https://vaultproject.io
https://vaultproject.io

vault_api_client 3

For testing packages that rely on vault, there is support for creating temporary vault servers; see
vaultr::vault_test_server and the "packages" vignette.

vault_api_client Vault Low-Level Client

Description

Vault Low-Level Client

Vault Low-Level Client

Details

Low-level API client. This can be used to directly communicate with the vault server. This object
will primarily be useful for debugging, testing or developing new vault methods, but is nonetheless
described here.

Super class

vaultr::vault_client_object -> vault_api_client

Public fields

addr The vault address (with protocol, hostname and port)

base_url The base url (with protocol, hostname, port and api version path)

tls_config Information used in TLS config, if used

token The vault token, if authenticated

version The vault server version, once queried

Methods

Public methods:

• vault_api_client$new()

• vault_api_client$request()

• vault_api_client$is_authenticated()

• vault_api_client$set_token()

• vault_api_client$verify_token()

• vault_api_client$server_version()

• vault_api_client$GET()

• vault_api_client$LIST()

• vault_api_client$POST()

• vault_api_client$PUT()

• vault_api_client$DELETE()

4 vault_api_client

Method new(): Create a new api client

Usage:
vault_api_client$new(addr = NULL, tls_config = NULL)

Arguments:

addr Address of the vault server
tls_config Optional TLS config

Method request(): Make a request to the api. Typically you should use one of the higher-level
wrappers, such as $GET or $POST.

Usage:
vault_api_client$request(verb, path, ..., token = self$token)

Arguments:

verb The HTTP verb to use, as a httr function (e.g., pass httr::GET for a GET request).
path The request path
... Additional arguments passed to the httr function
token Optional token, overriding the client token

Method is_authenticated(): Test if the vault client currently holds a vault token. This method
does not verify the token - only test that is present.

Usage:
vault_api_client$is_authenticated()

Method set_token(): Set a token within the client

Usage:
vault_api_client$set_token(token, verify = FALSE, quiet = FALSE)

Arguments:

token String, with the new vault client token
verify Logical, indicating if we should test that the token is valid. If TRUE, then we use

$verify_token() to test the token before setting it and if it is not valid an error will be
thrown and the token not set.

quiet Logical, if TRUE, then informational messages will be suppressed.

Method verify_token(): Test that a token is valid with the vault. This will call vault’s
/sys/capabilities-self endpoint with the token provided and check the /sys path.

Usage:
vault_api_client$verify_token(token, quiet = TRUE)

Arguments:

token String, with the vault client token to test
quiet Logical, if TRUE, then informational messages will be suppressed

Method server_version(): Retrieve the vault server version. This is by default cached within
the client for a session. Will return an R numeric_version object.

Usage:

vault_api_client 5

vault_api_client$server_version(refresh = FALSE)

Arguments:

refresh Logical, indicating if the server version information should be refreshed even if known.

Method GET(): Send a GET request to the vault server

Usage:
vault_api_client$GET(path, ...)

Arguments:

path The server path to use. This is the "interesting" part of the path only, with the server base
url and api version information added.

... Additional httr-compatible options. These will be named parameters or httr "request"
objects.

Method LIST(): Send a LIST request to the vault server

Usage:
vault_api_client$LIST(path, ...)

Arguments:

path The server path to use. This is the "interesting" part of the path only, with the server base
url and api version information added.

... Additional httr-compatible options. These will be named parameters or httr "request"
objects.

Method POST(): Send a POST request to the vault server

Usage:
vault_api_client$POST(path, ...)

Arguments:

path The server path to use. This is the "interesting" part of the path only, with the server base
url and api version information added.

... Additional httr-compatible options. These will be named parameters or httr "request"
objects.

Method PUT(): Send a PUT request to the vault server

Usage:
vault_api_client$PUT(path, ...)

Arguments:

path The server path to use. This is the "interesting" part of the path only, with the server base
url and api version information added.

... Additional httr-compatible options. These will be named parameters or httr "request"
objects.

Method DELETE(): Send a DELETE request to the vault server

Usage:
vault_api_client$DELETE(path, ...)

6 vault_client

Arguments:

path The server path to use. This is the "interesting" part of the path only, with the server base
url and api version information added.

... Additional httr-compatible options. These will be named parameters or httr "request"
objects.

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

Ordinarily, we would use the "vault_client" object for
high-level access to the vault server
client <- server$client()
client$status()

The api() method returns the "api client" object:
api <- client$api()
api

This allows running arbitrary HTTP requests against the server:
api$GET("/sys/seal-status")

this is how vaultr is internally implemented so anything can
be done here, for example following vault's API documentation
https://www.vaultproject.io/api/secret/kv/kv-v1.html#sample-request-2
api$POST("/secret/mysecret", body = list(key = "value"))
api$GET("/secret/mysecret")
api$DELETE("/secret/mysecret")

cleanup
server$kill()

}

vault_client Make a vault client

Description

Make a vault client. This must be done before accessing the vault. The default values for arguments
are controlled by environment variables (see Details) and values provided as arguments override
these defaults.

Usage

vault_client(login = FALSE, ..., addr = NULL, tls_config = NULL)

vault_client 7

Arguments

login Login method. Specify a string to be passed along as the method argument to
$login. The default FALSE means not to login. TRUE means to login using a
default method specified by the environment variable VAULTR_AUTH_METHOD -
if that variable is not set, an error is thrown. The value of NULL is the same as
TRUE but does not throw an error if VAULTR_AUTH_METHOD is not set. Supported
methods are token, github and userpass.

... Additional arguments passed along to the authentication method indicated by
login, if used.

addr The vault address including protocol and port, e.g., https://vault.example.com:8200.
If not given, the default is the environment variable VAULT_ADDR, which is the
same as used by vault’s command line client.

tls_config TLS (https) configuration. For most uses this can be left blank. However, if
your vault server uses a self-signed certificate you will need to provide this.
Defaults to the environment variable VAULT_CAPATH, which is the same as vault’s
command line client.

Environment variables

The creation of a client is affected by a number of environment variables, following the main vault
command line client.

• VAULT_ADDR: The url of the vault server. Must include a protocol (most likely https:// but
in testing http:// might be used)

• VAULT_CAPATH: The path to CA certificates

• VAULT_TOKEN: A vault token to use in authentication. Only used for token-based authentica-
tion

• VAULT_AUTH_GITHUB_TOKEN: As for the command line client, a github token for authentica-
tion using the github authentication backend

• VAULTR_AUTH_METHOD: The method to use for authentication

Super class

vaultr::vault_client_object -> vault_client

Public fields

auth Authentication backends: vault_client_auth

audit Audit methods: vault_client_audit

cubbyhole The vault cubbyhole key-value store: vault_client_cubbyhole

operator Operator methods: vault_client_operator

policy Policy methods: vault_client_policy

secrets Secret backends: vault_client_secrets

token Token methods: vault_client_token

tools Vault tools: vault_client_tools

8 vault_client

Methods

Public methods:
• vault_client_$new()

• vault_client_$api()

• vault_client_$read()

• vault_client_$write()

• vault_client_$delete()

• vault_client_$list()

• vault_client_$login()

• vault_client_$status()

• vault_client_$unwrap()

• vault_client_$wrap_lookup()

Method new(): Create a new vault client. Not typically called directly, but via the vault_client
method.

Usage:
vault_client_$new(addr, tls_config)

Arguments:

addr The vault address, including protocol and port
tls_config The TLS config, if used

Method api(): Returns an api client object that can be used to directly interact with the vault
server.

Usage:
vault_client_$api()

Method read(): Read a value from the vault. This can be used to read any value that you
have permission to read, and can also be used as an interface to a version 1 key-value store (see
vault_client_kv1. Similar to the vault CLI command vault read.

Usage:
vault_client_$read(path, field = NULL, metadata = FALSE)

Arguments:

path Path for the secret to read, such as /secret/mysecret
field Optional field to read from the secret. Each secret is stored as a key/value set (repre-

sented in R as a named list) and this is equivalent to using [[field]] on the return value.
The default, NULL, returns the full set of values.

metadata Logical, indicating if we should return metadata for this secret (lease information
etc) as an attribute along with the values itself. Ignored if field is specified.

Method write(): Write data into the vault. This can be used to write any value that you
have permission to write, and can also be used as an interface to a version 1 key-value store (see
vault_client_kv1. Similar to the vault CLI command vault write.

Usage:

vault_client 9

vault_client_$write(path, data)

Arguments:
path Path for the secret to write, such as /secret/mysecret
data A named list of values to write into the vault at this path. This replaces any existing

values.

Method delete(): Delete a value from the vault

Usage:
vault_client_$delete(path)

Arguments:
path The path to delete

Method list(): List data in the vault at a given path. This can be used to list keys, etc (e.g., at
/secret).

Usage:
vault_client_$list(path, full_names = FALSE)

Arguments:
path The path to list
full_names Logical, indicating if full paths (relative to the vault root) should be returned.

Returns: A character vector (of zero length if no keys are found). Paths that are "directories"
(i.e., that contain keys and could themselves be listed) will be returned with a trailing forward
slash, e.g. path/

Method login(): Login to the vault. This method is more complicated than most.

Usage:
vault_client_$login(
...,
method = "token",
mount = NULL,
renew = FALSE,
quiet = FALSE,
token_only = FALSE,
use_cache = TRUE

)

Arguments:
... Additional named parameters passed through to the underlying method
method Authentication method to use, as a string. Supported values include token (the default),

github, approle and userpass.
mount The mount path for the authentication backend, if it has been mounted in a nonstan-

dard location. If not given, then it is assumed that the backend was mounted at a path
corresponding to the method name.

renew Login, even if we appear to hold a valid token. If FALSE and we have a token then login
does nothing.

quiet Suppress some informational messages

10 vault_client

token_only Logical, indicating that we do not want to actually log in, but instead just generate
a token and return that. IF given then renew is ignored and we always generate a new token.

use_cache Logical, indicating if we should look in the session cache for a token for this client.
If this is TRUE then when we log in we save a copy of the token for this session and any
subsequent calls to login at this vault address that use use_cache = TRUE will be able to
use this token. Using cached tokens will make using some authentication backends that
require authentication with external resources (e.g., github) much faster.

Method status(): Return the status of the vault server, including whether it is sealed or not,
and the vault server version.

Usage:
vault_client_$status()

Method unwrap(): Returns the original response inside the given wrapping token. The vault
endpoints used by this method perform validation checks on the token, returns the original value
on the wire rather than a JSON string representation of it, and ensures that the response is properly
audit-logged.

Usage:
vault_client_$unwrap(token)

Arguments:

token Specifies the wrapping token ID

Method wrap_lookup(): Look up properties of a wrapping token.

Usage:
vault_client_$wrap_lookup(token)

Arguments:

token Specifies the wrapping token ID to lookup

Author(s)

Rich FitzJohn

Examples

We work with a test vault server here (see ?vault_test_server) for
details. To use it, you must have a vault binary installed on your
system. These examples will not affect any real running vault
instance that you can connect to.
server <- vaultr::vault_test_server(if_disabled = message)

if (!is.null(server)) {
Create a vault_client object by providing the address of the vault
server.
client <- vaultr::vault_client(addr = server$addr)

The client has many methods, grouped into a structure:

vault_client_audit 11

client

For example, token related commands:
client$token

The client is not authenticated by default:
try(client$list("/secret"))

A few methods are unauthenticated and can still be run
client$status()

Login to the vault, using the token that we know from the server -
ordinarily you would use a login approach suitable for your needs
(see the vault documentation).
token <- server$token
client$login(method = "token", token = token)

The vault contains no secrets at present
client$list("/secret")

Secrets can contain any (reasonable) number of key-value pairs,
passed in as a list
client$write("/secret/users/alice", list(password = "s3cret!"))

The whole list can be read out
client$read("/secret/users/alice")
...or just a field
client$read("/secret/users/alice", "password")

Reading non-existant values returns NULL, not an error
client$read("/secret/users/bob")

client$delete("/secret/users/alice")
}

vault_client_audit Vault Audit Devices

Description

Vault Audit Devices

Vault Audit Devices

Details

Interact with vault’s audit devices. For more details, see https://www.vaultproject.io/docs/audit/

Super class

vaultr::vault_client_object -> vault_client_audit

12 vault_client_audit

Methods

Public methods:
• vault_client_audit$new()

• vault_client_audit$list()

• vault_client_audit$enable()

• vault_client_audit$disable()

• vault_client_audit$hash()

Method new(): Create an audit object

Usage:
vault_client_audit$new(api_client)

Arguments:
api_client a vault_api_client object

Method list(): List active audit devices. Returns a data.frame of names, paths and descriptions
of active audit devices.

Usage:
vault_client_audit$list()

Method enable(): This endpoint enables a new audit device at the supplied path.

Usage:
vault_client_audit$enable(
type,
description = NULL,
options = NULL,
path = NULL

)

Arguments:
type Name of the audit device to enable
description Human readable description for this audit device
options Options to configure the device with. These vary by device. This must be a named list

of strings.
path Path to mount the audit device. By default, type is used as the path.

Method disable(): Disable an audit device

Usage:
vault_client_audit$disable(path)

Arguments:
path Path of the audit device to remove

Method hash(): The hash method is used to calculate the hash of the data used by an audit
device’s hash function and salt. This can be used to search audit logs for a hashed value when the
original value is known.

Usage:

vault_client_auth 13

vault_client_audit$hash(input, device)

Arguments:

input The input string to hash
device The path of the audit device

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()
By default no audit engines are enabled with the testing server
client$audit$list()

Create a file-based audit device on a temporary file:
path <- tempfile()
client$audit$enable("file", options = list(file_path = path))
client$audit$list()

Generate some activity on the server:
client$write("/secret/mysecret", list(key = "value"))

The audit logs contain details about the activity - see the
vault documentation for details in interpreting this
readLines(path)

cleanup
server$kill()
unlink(path)

}

vault_client_auth Vault Authentication Configuration

Description

Vault Authentication Configuration

Vault Authentication Configuration

Details

Interact with vault’s authentication backends.

Super class

vaultr::vault_client_object -> vault_client_auth

14 vault_client_auth

Public fields

approle Interact with vault’s AppRole authentication. See vault_client_auth_approle for
more information.

github Interact with vault’s GitHub authentication. See vault_client_auth_github for more
information.

token Interact with vault’s token authentication. See vault_client_token for more information.

userpass Interact with vault’s username/password based authentication. See vault_client_auth_userpass
for more information.

Methods

Public methods:
• vault_client_auth$new()

• vault_client_auth$backends()

• vault_client_auth$list()

• vault_client_auth$enable()

• vault_client_auth$disable()

Method new(): Create a vault_client_auth object. Not typically called by users.

Usage:
vault_client_auth$new(api_client)

Arguments:
api_client A vault_api_client object

Method backends(): Return a character vector of supported authentication backends. If a
backend x is present, then you can access it with $auth$x. Note that vault calls these authenti-
cation methods but we use backends here to differentiate with R6 methods. Note that these are
backends supported by vaultr and not necessarily supported by the server - the server may not
have enabled some of these backends, and may support other authentication backends not directly
supported by vaultr. See the $list() method to query what the server supports.

Usage:
vault_client_auth$backends()

Method list(): List authentication backends supported by the vault server, including informa-
tion about where these backends are mounted.

Usage:
vault_client_auth$list(detailed = FALSE)

Arguments:
detailed Logical, indicating if detailed information should be returned

Method enable(): Enable an authentication backend in the vault server.

Usage:
vault_client_auth$enable(type, description = NULL, local = FALSE, path = NULL)

Arguments:

vault_client_auth_approle 15

type The type of authentication backend (e.g., userpass, github)
description Human-friendly description of the backend; will be returned by $list()

local Specifies if the auth method is local only. Local auth methods are not replicated nor (if
a secondary) removed by replication.

path Specifies the path in which to enable the auth method. Defaults to be the same as type.

Method disable(): Disable an active authentication backend.

Usage:
vault_client_auth$disable(path)

Arguments:

path The path of the authentication backend to disable.

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

List configured authentication backends
client$auth$list()

cleanup
server$kill()

}

vault_client_auth_approle

Vault AppRole Authentication Configuration

Description

Vault AppRole Authentication Configuration

Vault AppRole Authentication Configuration

Details

Interact with vault’s AppRole authentication backend. For more details about this, see the vault
documentation at https://www.vaultproject.io/docs/auth/approle.html

Super class

vaultr::vault_client_object -> vault_client_auth_approle

16 vault_client_auth_approle

Methods

Public methods:

• vault_client_auth_approle$new()

• vault_client_auth_approle$custom_mount()

• vault_client_auth_approle$role_list()

• vault_client_auth_approle$role_write()

• vault_client_auth_approle$role_read()

• vault_client_auth_approle$role_delete()

• vault_client_auth_approle$role_id_read()

• vault_client_auth_approle$role_id_write()

• vault_client_auth_approle$secret_id_generate()

• vault_client_auth_approle$secret_id_list()

• vault_client_auth_approle$secret_id_read()

• vault_client_auth_approle$secret_id_delete()

• vault_client_auth_approle$login()

Method new(): Create a vault_client_approle object. Not typically called by users.

Usage:
vault_client_auth_approle$new(api_client, mount)

Arguments:

api_client A vault_api_client object
mount Mount point for the backend

Method custom_mount(): Set up a vault_client_auth_approle object at a custom mount.
For example, suppose you mounted the approle authentication backend at /approle-dev you
might use ar <- vault$auth$approle2$custom_mount("/approle-dev") - this pattern is re-
peated for other secret and authentication backends.

Usage:
vault_client_auth_approle$custom_mount(mount)

Arguments:

mount String, indicating the path that the engine is mounted at.

Method role_list(): This endpoint returns a list the existing AppRoles in the method.

Usage:
vault_client_auth_approle$role_list()

Method role_write(): Creates a new AppRole or updates an existing AppRole. This endpoint
supports both create and update capabilities. There can be one or more constraints enabled on the
role. It is required to have at least one of them enabled while creating or updating a role.

Usage:

vault_client_auth_approle 17

vault_client_auth_approle$role_write(
role_name,
bind_secret_id = NULL,
secret_id_bound_cidrs = NULL,
token_bound_cidrs = NULL,
policies = NULL,
secret_id_num_uses = NULL,
secret_id_ttl = NULL,
token_num_uses = NULL,
token_ttl = NULL,
token_max_ttl = NULL,
period = NULL,
enable_local_secret_ids = NULL,
token_type = NULL

)

Arguments:

role_name Name of the AppRole
bind_secret_id Require secret_id to be presented when logging in using this AppRole (boolean,

default is TRUE).
secret_id_bound_cidrs Character vector of CIDR blocks; if set, specifies blocks of IP ad-

dresses which can perform the login operation.
token_bound_cidrs Character vector of if set, specifies blocks of IP addresses which can use

the auth tokens generated by this role.
policies Character vector of policies set on tokens issued via this AppRole.
secret_id_num_uses Number of times any particular SecretID can be used to fetch a token

from this AppRole, after which the SecretID will expire. A value of zero will allow unlim-
ited uses.

secret_id_ttl Duration, after which any SecretID expires.
token_num_uses Number of times issued tokens can be used. A value of 0 means unlimited

uses
token_ttl Duration to set as the TTL for issued tokens and at renewal time.
token_max_ttl Duration, after which the issued token can no longer be renewed.
period A duration; when set, the token generated using this AppRole is a periodic token; so

long as it is renewed it never expires, but the TTL set on the token at each renewal is fixed
to the value specified here. If this value is modified, the token will pick up the new value at
its next renewal.

enable_local_secret_ids Boolean, if TRUE, then the secret IDs generated using this role will
be cluster local. This can only be set during role creation and once set, it can’t be reset later.

token_type The type of token that should be generated via this role. Can be service, batch,
or default to use the mount’s default (which unless changed will be service tokens).

Method role_read(): Reads the properties of an existing AppRole.

Usage:
vault_client_auth_approle$role_read(role_name)

Arguments:

18 vault_client_auth_approle

role_name Name of the AppRole

Method role_delete(): Deletes an existing AppRole from the method.

Usage:
vault_client_auth_approle$role_delete(role_name)

Arguments:

role_name Name of the AppRole to delete

Method role_id_read(): Reads the RoleID of an existing AppRole.

Usage:
vault_client_auth_approle$role_id_read(role_name)

Arguments:

role_name Name of the AppRole

Method role_id_write(): Updates the RoleID of an existing AppRole to a custom value.

Usage:
vault_client_auth_approle$role_id_write(role_name, role_id)

Arguments:

role_name Name of the AppRole (string)
role_id Value to be set as RoleID (string)

Method secret_id_generate(): Generates and issues a new SecretID on an existing AppRole.
Similar to tokens, the response will also contain a secret_id_accessor value which can be used
to read the properties of the SecretID without divulging the SecretID itself, and also to delete the
SecretID from the AppRole.

Usage:
vault_client_auth_approle$secret_id_generate(
role_name,
metadata = NULL,
cidr_list = NULL,
token_bound_cidrs = NULL

)

Arguments:

role_name Name of the AppRole.
metadata Metadata to be tied to the SecretID. This should be a named list of key-value pairs.

This metadata will be set on tokens issued with this SecretID, and is logged in audit logs in
plaintext.

cidr_list Character vector CIDR blocks enforcing secret IDs to be used from specific set of
IP addresses. If bound_cidr_list is set on the role, then the list of CIDR blocks listed here
should be a subset of the CIDR blocks listed on the role.

token_bound_cidrs Character vector of CIDR blocks; if set, specifies blocks of IP addresses
which can use the auth tokens generated by this SecretID. Overrides any role-set value but
must be a subset.

vault_client_auth_approle 19

Method secret_id_list(): Lists the accessors of all the SecretIDs issued against the AppRole.
This includes the accessors for "custom" SecretIDs as well.

Usage:
vault_client_auth_approle$secret_id_list(role_name)

Arguments:
role_name Name of the AppRole

Method secret_id_read(): Reads out the properties of a SecretID.

Usage:
vault_client_auth_approle$secret_id_read(
role_name,
secret_id,
accessor = FALSE

)

Arguments:
role_name Name of the AppRole
secret_id Secret ID attached to the role
accessor Logical, if TRUE, treat secret_id as an accessor rather than a secret id.

Method secret_id_delete(): Delete an AppRole secret ID

Usage:
vault_client_auth_approle$secret_id_delete(
role_name,
secret_id,
accessor = FALSE

)

Arguments:
role_name Name of the AppRole
secret_id Secret ID attached to the role
accessor Logical, if TRUE, treat secret_id as an accessor rather than a secret id.

Method login(): Log into the vault using AppRole authentication. Normally you would not
call this directly but instead use $login with method = "approle" and proving the role_id and
secret_id arguments. This function returns a vault token but does not set it as the client token.

Usage:
vault_client_auth_approle$login(role_id, secret_id)

Arguments:
role_id RoleID of the AppRole
secret_id SecretID belonging to AppRole

Examples

vaultr::vault_client(addr = "https://localhost:8200")$auth$approle

20 vault_client_auth_github

vault_client_auth_github

Vault GitHub Authentication Configuration

Description

Vault GitHub Authentication Configuration

Vault GitHub Authentication Configuration

Details

Interact with vault’s GitHub authentication backend. For more details, please see the vault docu-
mentation at https://www.vaultproject.io/docs/auth/github.html

Super class

vaultr::vault_client_object -> vault_client_auth_github

Methods

Public methods:
• vault_client_auth_github$new()

• vault_client_auth_github$custom_mount()

• vault_client_auth_github$configure()

• vault_client_auth_github$configuration()

• vault_client_auth_github$write()

• vault_client_auth_github$read()

• vault_client_auth_github$login()

Method new(): Create a vault_client_github object. Not typically called by users.

Usage:
vault_client_auth_github$new(api_client, mount)

Arguments:
api_client A vault_api_client object
mount Mount point for the backend

Method custom_mount(): Set up a vault_client_auth_github object at a custom mount. For
example, suppose you mounted the github authentication backend at /github-myorg you might
use gh <- vault$auth$github2$custom_mount("/github-myorg") - this pattern is repeated
for other secret and authentication backends.

Usage:
vault_client_auth_github$custom_mount(mount)

Arguments:
mount String, indicating the path that the engine is mounted at.

vault_client_auth_github 21

Method configure(): Configures the connection parameters for GitHub-based authentication.

Usage:
vault_client_auth_github$configure(
organization,
base_url = NULL,
ttl = NULL,
max_ttl = NULL

)

Arguments:

organization The organization users must be part of (note American spelling).
base_url The API endpoint to use. Useful if you are running GitHub Enterprise or an API-

compatible authentication server.
ttl Duration after which authentication will be expired
max_ttl Maximum duration after which authentication will be expired

Method configuration(): Reads the connection parameters for GitHub-based authentication.

Usage:
vault_client_auth_github$configuration()

Method write(): Write a mapping between a GitHub team or user and a set of vault policies.

Usage:
vault_client_auth_github$write(team_name, policies, user = FALSE)

Arguments:

team_name String, with the GitHub team name
policies A character vector of vault policies that this user or team will have for vault access

if they match this team or user.
user Scalar logical - if TRUE, then team_name is interpreted as a user instead.

Method read(): Write a mapping between a GitHub team or user and a set of vault policies.

Usage:
vault_client_auth_github$read(team_name, user = FALSE)

Arguments:

team_name String, with the GitHub team name
user Scalar logical - if TRUE, then team_name is interpreted as a user instead.

Method login(): Log into the vault using GitHub authentication. Normally you would not call
this directly but instead use $login with method = "github" and proving the token argument.
This function returns a vault token but does not set it as the client token.

Usage:
vault_client_auth_github$login(token = NULL)

Arguments:

token A GitHub token to authenticate with.

22 vault_client_auth_userpass

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

client$auth$enable("github")
To enable login for members of the organisation "vimc":
client$auth$github$configure(organization = "vimc")
To map members of the "robots" team *within* that organisation
to the "defaut" policy:
client$auth$github$write("development", "default")

Once configured like this, if we have a PAT for a member of
the "development" team saved as an environment variable
"VAULT_AUTH_GITHUB_TOKEN" then doing
#
vaultr::vault_client(addr = ..., login = "github")
#
will contact GitHub to verify the user token and vault will
then issue a client token

cleanup
server$kill()

}

vault_client_auth_userpass

Vault Username/Password Authentication Configuration

Description

Vault Username/Password Authentication Configuration

Vault Username/Password Authentication Configuration

Details

Interact with vault’s username/password authentication backend. This backend can be used to con-
figure basic username+password authentication, suitable for human users. For more information,
please see the vault documentation https://www.vaultproject.io/docs/auth/userpass.html

Super class

vaultr::vault_client_object -> vault_client_auth_userpass

Methods

Public methods:
• vault_client_auth_userpass$new()

vault_client_auth_userpass 23

• vault_client_auth_userpass$custom_mount()

• vault_client_auth_userpass$write()

• vault_client_auth_userpass$read()

• vault_client_auth_userpass$delete()

• vault_client_auth_userpass$update_password()

• vault_client_auth_userpass$update_policies()

• vault_client_auth_userpass$list()

• vault_client_auth_userpass$login()

Method new(): Create a vault_client_userpass object. Not typically called by users.

Usage:
vault_client_auth_userpass$new(api_client, mount)

Arguments:

api_client A vault_api_client object
mount Mount point for the backend

Method custom_mount(): Set up a vault_client_auth_userpass object at a custom mount.
For example, suppose you mounted the userpass authentication backend at /userpass2 you
might use up <- vault$auth$userpass2$custom_mount("/userpass2") - this pattern is re-
peated for other secret and authentication backends.

Usage:
vault_client_auth_userpass$custom_mount(mount)

Arguments:

mount String, indicating the path that the engine is mounted at.

Method write(): Create or update a user.

Usage:
vault_client_auth_userpass$write(
username,
password = NULL,
policies = NULL,
ttl = NULL,
max_ttl = NULL,
bound_cidrs = NULL

)

Arguments:

username Username for the user
password Password for the user (required when creating a user only)
policies Character vector of policies for the user
ttl The lease duration which decides login expiration
max_ttl Maximum duration after which login should expire
bound_cidrs Character vector of CIDRs. If set, restricts usage of the login and token to client

IPs falling within the range of the specified CIDR(s).

24 vault_client_auth_userpass

Method read(): Reads the properties of an existing username.

Usage:
vault_client_auth_userpass$read(username)

Arguments:

username Username to read

Method delete(): Delete a user

Usage:
vault_client_auth_userpass$delete(username)

Arguments:

username Username to delete

Method update_password(): Update password for a user

Usage:
vault_client_auth_userpass$update_password(username, password)

Arguments:

username Username for the user to update
password New password for the user

Method update_policies(): Update vault policies for a user

Usage:
vault_client_auth_userpass$update_policies(username, policies)

Arguments:

username Username for the user to update
policies Character vector of policies for this user

Method list(): List users known to vault

Usage:
vault_client_auth_userpass$list()

Method login(): Log into the vault using username/password authentication. Normally you
would not call this directly but instead use $login with method = "userpass" and proving the
username argument and optionally the password argument. This function returns a vault token
but does not set it as the client token.

Usage:
vault_client_auth_userpass$login(username, password = NULL)

Arguments:

username Username to authenticate with
password Password to authenticate with. If omitted or NULL and the session is interactive, the

password will be prompted for.

vault_client_cubbyhole 25

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

root <- server$client()

The userpass authentication backend is not enabled by default,
so we need to enable it first
root$auth$enable("userpass")

Then we can add users:
root$auth$userpass$write("alice", "p4ssw0rd")

Create a new client and login with this user:
alice <- vaultr::vault_client(addr = server$addr)
it is not recommended to login with the password like this as
it will end up in the command history, but in interactive use
you will be prompted securely for password
alice$login(method = "userpass",

username = "alice", password = "p4ssw0rd")
Alice has now logged in and has only "default" policies
alice$auth$token$lookup_self()$policies

(wheras our original root user has the "root" policy)
root$auth$token$lookup_self()$policies

}

vault_client_cubbyhole

Cubbyhole secret store

Description

Cubbyhole secret store

Cubbyhole secret store

Details

Interact with vault’s cubbyhole key-value store. This is useful for storing simple key-value data
without versioning or metadata (c.f. vault_client_kv2) that is scoped to your current token only and
not accessible to anyone else. For more details please see the vault documentation https://www.vaultproject.io/docs/secrets/cubbyhole/index.html

Super class

vaultr::vault_client_object -> vault_client_cubbyhole

26 vault_client_cubbyhole

Methods

Public methods:
• vault_client_cubbyhole$new()

• vault_client_cubbyhole$read()

• vault_client_cubbyhole$write()

• vault_client_cubbyhole$list()

• vault_client_cubbyhole$delete()

Method new(): Create a vault_client_cubbyhole object. Not typically called by users.

Usage:
vault_client_cubbyhole$new(api_client)

Arguments:
api_client A vault_api_client object

Method read(): Read a value from your cubbyhole

Usage:
vault_client_cubbyhole$read(path, field = NULL, metadata = FALSE)

Arguments:
path Path for the secret to read, such as /cubbyhole/mysecret
field Optional field to read from the secret. Each secret is stored as a key/value set (repre-

sented in R as a named list) and this is equivalent to using [[field]] on the return value.
The default, NULL, returns the full set of values.

metadata Logical, indicating if we should return metadata for this secret (lease information
etc) as an attribute along with the values itself. Ignored if field is specified.

Method write(): Write data into your cubbyhole.

Usage:
vault_client_cubbyhole$write(path, data)

Arguments:
path Path for the secret to write, such as /cubbyhole/mysecret
data A named list of values to write into the vault at this path. This replaces any existing

values.

Method list(): List data in the vault at a give path. This can be used to list keys, etc (e.g., at
/cubbyhole).

Usage:
vault_client_cubbyhole$list(path, full_names = FALSE)

Arguments:
path The path to list
full_names Logical, indicating if full paths (relative to the vault root) should be returned.
value A character vector (of zero length if no keys are found). Paths that are "directories" (i.e.,

that contain keys and could themselves be listed) will be returned with a trailing forward
slash, e.g. path/

vault_client_kv1 27

Method delete(): Delete a value from the vault

Usage:
vault_client_cubbyhole$delete(path)

Arguments:

path The path to delete

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

Shorter path for easier reading:
cubbyhole <- client$secrets$cubbyhole
cubbyhole

Write a value
cubbyhole$write("cubbyhole/secret", list(key = "value"))
List it
cubbyhole$list("cubbyhole")
Read it
cubbyhole$read("cubbyhole/secret")
Delete it
cubbyhole$delete("cubbyhole/secret")

cleanup
server$kill()

}

vault_client_kv1 Key-Value Store (Version 1)

Description

Key-Value Store (Version 1)

Key-Value Store (Version 1)

Details

Interact with vault’s version 1 key-value store. This is useful for storing simple key-value data
without versioning or metadata (see vault_client_kv2 for a richer key-value store).

Up to vault version 0.12.0 this was mounted by default at /secret. It can be accessed from vault
with either the $read, $write, $list and $delete methods on the main vault_client object or by
the $kv1 member of the secrets member of the main vault client (vault_client_secrets)

28 vault_client_kv1

Super class

vaultr::vault_client_object -> vault_client_kv1

Methods

Public methods:
• vault_client_kv1$new()

• vault_client_kv1$custom_mount()

• vault_client_kv1$read()

• vault_client_kv1$write()

• vault_client_kv1$list()

• vault_client_kv1$delete()

Method new(): Create a vault_client_kv1 object. Not typically called by users.

Usage:
vault_client_kv1$new(api_client, mount)

Arguments:
api_client A vault_api_client object
mount Mount point for the backend

Method custom_mount(): Set up a vault_client_kv1 object at a custom mount. For example,
suppose you mounted another copy of the kv1 secret backend at /secret2 you might use kv <-
vault$secrets$kv1$custom_mount("/secret2") - this pattern is repeated for other secret and
authentication backends.

Usage:
vault_client_kv1$custom_mount(mount)

Arguments:
mount String, indicating the path that the engine is mounted at.

Method read(): Read a value from the vault. This can be used to read any value that you have
permission to read in this store.

Usage:
vault_client_kv1$read(path, field = NULL, metadata = FALSE)

Arguments:
path Path for the secret to read, such as /secret/mysecret
field Optional field to read from the secret. Each secret is stored as a key/value set (repre-

sented in R as a named list) and this is equivalent to using [[field]] on the return value.
The default, NULL, returns the full set of values.

metadata Logical, indicating if we should return metadata for this secret (lease information
etc) as an attribute along with the values itself. Ignored if field is specified.

Method write(): Write data into the vault. This can be used to write any value that you have
permission to write in this store.

Usage:

vault_client_kv1 29

vault_client_kv1$write(path, data)

Arguments:
path Path for the secret to write, such as /secret/mysecret
data A named list of values to write into the vault at this path. This replaces any existing

values.

Method list(): List data in the vault at a give path. This can be used to list keys, etc (e.g., at
/secret).

Usage:
vault_client_kv1$list(path, full_names = FALSE)

Arguments:
path The path to list
full_names Logical, indicating if full paths (relative to the vault root) should be returned.
value A character vector (of zero length if no keys are found). Paths that are "directories" (i.e.,

that contain keys and could themselves be listed) will be returned with a trailing forward
slash, e.g. path/

Method delete(): Delete a value from the vault

Usage:
vault_client_kv1$delete(path)

Arguments:
path The path to delete

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

Write secrets
client$secrets$kv1$write("/secret/path/mysecret", list(key = "value"))

List secrets - note the trailing "/" indicates a folder
client$secrets$kv1$list("/secret")
client$secrets$kv1$list("/secret/path")

Read secrets
client$secrets$kv1$read("/secret/path/mysecret")
client$secrets$kv1$read("/secret/path/mysecret", field = "key")

Delete secrets
client$secrets$kv1$delete("/secret/path/mysecret")
client$secrets$kv1$read("/secret/path/mysecret")

cleanup
server$kill()

}

30 vault_client_kv2

vault_client_kv2 Key-Value Store (Version 2)

Description

Key-Value Store (Version 2)

Key-Value Store (Version 2)

Details

Interact with vault’s version 2 key-value store. This is useful for storing simple key-value data
that can be versioned and for storing metadata alongside the secrets (see vault_client_kv1 for a
simpler key-value store, and see https://www.vaultproject.io/docs/secrets/kv/kv-v2.html for detailed
information about this secret store.

A kv2 store can be mounted anywhere, so all methods accept a mount argument. This is differ-
ent to the CLI which lets you try and read values from any vault path, but similar to other secret
and auth backends which accept arguments like -mount-point. So if the kv2 store is mounted at
/project-secrets for example, with a vault client vault one could write

vault$secrets$kv2$get("/project-secrets/mysecret",
mount = "project-secrets")

or

kv2 <- vault$secrets$kv2$custom_mount("project-secrets")
kv2$get("mysecret")

If the leading part of of a path to secret within a kv2 store does not match the mount point, vaultr
will throw an error. This approach results in more predictable error messages, though it is a little
more typing than for the CLI vault client.

Super class

vaultr::vault_client_object -> vault_client_kv2

Methods

Public methods:
• vault_client_kv2$new()

• vault_client_kv2$config()

• vault_client_kv2$custom_mount()

• vault_client_kv2$delete()

• vault_client_kv2$destroy()

• vault_client_kv2$get()

• vault_client_kv2$list()

vault_client_kv2 31

• vault_client_kv2$metadata_get()

• vault_client_kv2$metadata_put()

• vault_client_kv2$metadata_delete()

• vault_client_kv2$put()

• vault_client_kv2$undelete()

Method new(): Create a vault_client_kv2 object. Not typically called by users.

Usage:
vault_client_kv2$new(api_client, mount)

Arguments:
api_client A vault_api_client object
mount Mount point for the backend

Method config(): Fetch the configuration for this kv2 store. Returns a named list of values,
the contents of which will depend on the vault version.

Usage:
vault_client_kv2$config(mount = NULL)

Arguments:
mount Custom mount path to use for this store (see Details).

Method custom_mount(): Set up a vault_client_kv2 object at a custom mount. For example,
suppose you mounted another copy of the kv2 secret backend at /secret2 you might use kv <-
vault$secrets$kv2$custom_mount("/secret2") - this pattern is repeated for other secret and
authentication backends.

Usage:
vault_client_kv2$custom_mount(mount)

Arguments:
mount String, indicating the path that the engine is mounted at.

Method delete(): Delete a secret from the vault. This marks the version as deleted and will
stop it from being returned from reads, but the underlying data will not be removed. A delete can
be undone using the undelete method.

Usage:
vault_client_kv2$delete(path, version = NULL, mount = NULL)

Arguments:
path Path to delete
version Optional version to delete. If NULL (the default) then the latest version of the secret is

deleted. Otherwise, version can be a vector of integer versions to delete.
mount Custom mount path to use for this store (see Details).

Method destroy(): Delete a secret entirely. Unlike delete this operation is irreversible and is
more like the delete operation on vault_client_kv1 stores.

Usage:
vault_client_kv2$destroy(path, version, mount = NULL)

32 vault_client_kv2

Arguments:

path Path to delete
version Version numbers to delete, as a vector of integers (this is required)
mount Custom mount path to use for this store (see Details).

Method get(): Read a secret from the vault

Usage:
vault_client_kv2$get(
path,
version = NULL,
field = NULL,
metadata = FALSE,
mount = NULL

)

Arguments:

path Path of the secret to read
version Optional version of the secret to read. If NULL (the default) then the most recent

version is read. Otherwise this must be a scalar integer.
field Optional field to read from the secret. Each secret is stored as a key/value set (repre-

sented in R as a named list) and this is equivalent to using [[field]] on the return value.
The default, NULL, returns the full set of values.

metadata Logical, indicating if we should return metadata for this secret (lease information
etc) as an attribute along with the values itself. Ignored if field is specified.

mount Custom mount path to use for this store (see Details).

Method list(): List data in the vault at a give path. This can be used to list keys, etc (e.g., at
/secret).

Usage:
vault_client_kv2$list(path, full_names = FALSE, mount = NULL)

Arguments:

path The path to list
full_names Logical, indicating if full paths (relative to the vault root) should be returned.
mount Custom mount path to use for this store (see Details).
value A character vector (of zero length if no keys are found). Paths that are "directories" (i.e.,

that contain keys and could themselves be listed) will be returned with a trailing forward
slash, e.g. path/

Method metadata_get(): Read secret metadata and versions at the specified path

Usage:
vault_client_kv2$metadata_get(path, mount = NULL)

Arguments:

path Path of secret to read metadata for
mount Custom mount path to use for this store (see Details).

vault_client_kv2 33

Method metadata_put(): Update metadata for a secret. This is allowed even if a secret does
not yet exist, though this requires the create vault permission at this path.

Usage:
vault_client_kv2$metadata_put(
path,
cas_required = NULL,
max_versions = NULL,
mount = NULL

)

Arguments:
path Path of secret to update metadata for
cas_required Logical, indicating that if If true the key will require the cas parameter to be set

on all write requests (see put). If FALSE, the backend’s configuration will be used.
max_versions Integer, indicating the maximum number of versions to keep per key. If not set,

the backend’s configured max version is used. Once a key has more than the configured
allowed versions the oldest version will be permanently deleted.

mount Custom mount path to use for this store (see Details).

Method metadata_delete(): This method permanently deletes the key metadata and all ver-
sion data for the specified key. All version history will be removed.

Usage:
vault_client_kv2$metadata_delete(path, mount = NULL)

Arguments:
path Path to delete
mount Custom mount path to use for this store (see Details).

Method put(): Create or update a secret in this store.
Usage:
vault_client_kv2$put(path, data, cas = NULL, mount = NULL)

Arguments:
path Path for the secret to write, such as /secret/mysecret
data A named list of values to write into the vault at this path.
cas Integer, indicating the "cas" value to use a "Check-And-Set" operation. If not set the write

will be allowed. If set to 0 a write will only be allowed if the key doesn’t exist. If the index
is non-zero the write will only be allowed if the key’s current version matches the version
specified in the cas parameter.

mount Custom mount path to use for this store (see Details).

Method undelete(): Undeletes the data for the provided version and path in the key-value
store. This restores the data, allowing it to be returned on get requests. This works with data
deleted with $delete but not with $destroy.

Usage:
vault_client_kv2$undelete(path, version, mount = NULL)

Arguments:
path The path to undelete
version Integer vector of versions to undelete
mount Custom mount path to use for this store (see Details).

34 vault_client_object

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()
With the test server as created by vaultr, the kv2 storage
engine is not enabled. To use the kv2 store we must first
enable it; the command below will add it at the path /kv on
our vault server
client$secrets$enable("kv", version = 2)

For ease of reading, create a 'kv' object for interacting with
the store (see below for the calls without this object)
kv <- client$secrets$kv2$custom_mount("kv")
kv$config()

The version-2 kv store can be treated largely the same as the
version-1 store, though with slightly different command names
(put instead of write, get instead of read)
kv$put("/kv/path/secret", list(key = "value"))
kv$get("/kv/path/secret")

But it also allows different versions to be stored at the same path:
kv$put("/kv/path/secret", list(key = "s3cret!"))
kv$get("/kv/path/secret")

Old versions can be retrieved still:
kv$get("/kv/path/secret", version = 1)

And metadata about versions can be retrieved
kv$metadata_get("/kv/path/secret")

cleanup
server$kill()

}

vault_client_object Base object type

Description

Base object type

Base object type

Details

Base object used by vaultr for all objects

vault_client_operator 35

Methods

Public methods:
• vault_client_object$new()

• vault_client_object$format()

• vault_client_object$help()

Method new(): Construct an object

Usage:
vault_client_object$new(description)

Arguments:
description Description for the object, will be printed

Method format(): Format method, overriding the R6 default

Usage:
vault_client_object$format(brief = FALSE)

Arguments:
brief Logical, indicating if this is the full format or a brief (one line) format.

Method help(): Display help for this object

Usage:
vault_client_object$help()

Examples

server <- vaultr::vault_test_server(if_disabled = message)

if (!is.null(server)) {
client <- vaultr::vault_client(addr = server$addr)
client$operator$format()
client$operator$format(TRUE)

}

vault_client_operator Vault Administration

Description

Vault Administration

Vault Administration

Details

Administration commands for vault operators. Very few of these commands should be used without
consulting the vault documentation as they affect the administration of a vault server, but they are
included here for completeness.

36 vault_client_operator

Super class

vaultr::vault_client_object -> vault_client_operator

Methods

Public methods:
• vault_client_operator$new()

• vault_client_operator$key_status()

• vault_client_operator$is_initialized()

• vault_client_operator$init()

• vault_client_operator$leader_status()

• vault_client_operator$rekey_status()

• vault_client_operator$rekey_start()

• vault_client_operator$rekey_cancel()

• vault_client_operator$rekey_submit()

• vault_client_operator$rotate()

• vault_client_operator$seal()

• vault_client_operator$seal_status()

• vault_client_operator$unseal()

Method new(): Create a vault_client_operator object. Not typically called by users.

Usage:
vault_client_operator$new(api_client)

Arguments:
api_client A vault_api_client object

Method key_status(): Return information about the current encryption key of Vault.

Usage:
vault_client_operator$key_status()

Method is_initialized(): Returns the initialization status of Vault

Usage:
vault_client_operator$is_initialized()

Method init(): This endpoint initializes a new Vault. The Vault must not have been previously
initialized.

Usage:
vault_client_operator$init(secret_shares, secret_threshold)

Arguments:
secret_shares Integer, specifying the number of shares to split the master key into
secret_threshold Integer, specifying the number of shares required to reconstruct the master

key. This must be less than or equal secret_shares

Method leader_status(): Check the high availability status and current leader of Vault

vault_client_operator 37

Usage:
vault_client_operator$leader_status()

Method rekey_status(): Reads the configuration and progress of the current rekey attempt

Usage:
vault_client_operator$rekey_status()

Method rekey_start(): This method begins a new rekey attempt. Only a single rekey attempt
can take place at a time, and changing the parameters of a rekey requires cancelling and starting a
new rekey, which will also provide a new nonce.

Usage:
vault_client_operator$rekey_start(secret_shares, secret_threshold)

Arguments:

secret_shares Integer, specifying the number of shares to split the master key into
secret_threshold Integer, specifying the number of shares required to reconstruct the master

key. This must be less than or equal secret_shares

Method rekey_cancel(): This method cancels any in-progress rekey. This clears the rekey
settings as well as any progress made. This must be called to change the parameters of the rekey.
Note verification is still a part of a rekey. If rekeying is cancelled during the verification flow, the
current unseal keys remain valid.

Usage:
vault_client_operator$rekey_cancel()

Method rekey_submit(): This method is used to enter a single master key share to progress the
rekey of the Vault. If the threshold number of master key shares is reached, Vault will complete
the rekey. Otherwise, this method must be called multiple times until that threshold is met. The
rekey nonce operation must be provided with each call.

Usage:
vault_client_operator$rekey_submit(key, nonce)

Arguments:

key Specifies a single master share key (a string)
nonce Specifies the nonce of the rekey operation (a string)

Method rotate(): This method triggers a rotation of the backend encryption key. This is the
key that is used to encrypt data written to the storage backend, and is not provided to operators.
This operation is done online. Future values are encrypted with the new key, while old values are
decrypted with previous encryption keys.

Usage:
vault_client_operator$rotate()

Method seal(): Seal the vault, preventing any access to it. After the vault is sealed, it must be
unsealed for further use.

Usage:
vault_client_operator$seal()

38 vault_client_policy

Method seal_status(): Check the seal status of a Vault. This method can be used even when
the client is not authenticated with the vault (which will the case for a sealed vault).

Usage:
vault_client_operator$seal_status()

Method unseal(): Submit a portion of a key to unseal the vault. This method is typically called
by multiple different operators to assemble the master key.

Usage:
vault_client_operator$unseal(key, reset = FALSE)

Arguments:
key The master key share
reset Logical, indicating if the unseal process should start be started again.

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

Our test server is by default unsealed:
client$status()$sealed

We can seal the vault to prevent all access:
client$operator$seal()
client$status()$sealed

And then unseal it again
client$operator$unseal(server$keys)
client$status()$sealed

}

vault_client_policy Vault Policy Configuration

Description

Vault Policy Configuration

Vault Policy Configuration

Details

Interact with vault’s policies. To get started, you may want to read up on policies as described in
the vault manual, here: https://www.vaultproject.io/docs/concepts/policies.html

Super class

vaultr::vault_client_object -> vault_client_policy

vault_client_policy 39

Methods

Public methods:

• vault_client_policy$new()

• vault_client_policy$delete()

• vault_client_policy$list()

• vault_client_policy$read()

• vault_client_policy$write()

Method new(): Create a vault_client_policy object. Not typically called by users.

Usage:
vault_client_policy$new(api_client)

Arguments:

api_client A vault_api_client object

Method delete(): This endpoint deletes the policy with the given name. This will immediately
affect all users associated with this policy.

Usage:
vault_client_policy$delete(name)

Arguments:

name Specifies the name of the policy to delete.

Method list(): Lists all configured policies.

Usage:
vault_client_policy$list()

Method read(): Retrieve the policy body for the named policy

Usage:
vault_client_policy$read(name)

Arguments:

name Specifies the name of the policy to retrieve

Method write(): Create or update a policy. Once a policy is updated, it takes effect immediately
to all associated users.

Usage:
vault_client_policy$write(name, rules)

Arguments:

name Name of the policy to update
rules Specifies the policy document. This is a string in "HashiCorp configuration language".

At present this must be read in as a single string (not a character vector of strings); future
versions of vaultr may allow more flexible specification such as @filename

40 vault_client_secrets

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

The test server starts with only the policies "root" (do
everything) and "default" (do nothing).
client$policy$list()

Here let's make a policy that allows reading secrets from the
path /secret/develop/* but nothing else
rules <- 'path "secret/develop/*" {policy = "read"}'
client$policy$write("read-secret-develop", rules)

Our new rule is listed and can be read
client$policy$list()
client$policy$read("read-secret-develop")

For testing, let's create a secret under this path, and under
a different path:
client$write("/secret/develop/password", list(value = "password"))
client$write("/secret/production/password", list(value = "k2e89be@rdC#"))

Create a token that can use this policy:
token <- client$auth$token$create(policies = "read-secret-develop")

Login to the vault using this token:
alice <- vaultr::vault_client(addr = server$addr,

login = "token", token = token)

We can read the paths that we have been granted access to:
alice$read("/secret/develop/password")

We can't read secrets that are outside our path:
try(alice$read("/secret/production/password"))

And we can't write:
try(alice$write("/secret/develop/password", list(value = "secret")))

cleanup
server$kill()

}

vault_client_secrets Vault Secret Configuration

Description

Vault Secret Configuration

Vault Secret Configuration

vault_client_secrets 41

Details

Interact with vault’s secret backends.

Super class

vaultr::vault_client_object -> vault_client_secrets

Public fields

cubbyhole The cubbyhole backend: vault_client_cubbyhole

kv1 The version 1 key-value backend: vault_client_kv1

kv2 The version 2 key-value backend: vault_client_kv2

transit The transit backend: vault_client_transit

Methods

Public methods:
• vault_client_secrets$new()

• vault_client_secrets$disable()

• vault_client_secrets$enable()

• vault_client_secrets$list()

• vault_client_secrets$move()

Method new(): Create a vault_client_secrets object. Not typically called by users.

Usage:
vault_client_secrets$new(api_client)

Arguments:

api_client A vault_api_client object

Method disable(): Disable a previously-enabled secret engine

Usage:
vault_client_secrets$disable(path)

Arguments:

path Path of the secret engine

Method enable(): Enable a secret backend in the vault server

Usage:
vault_client_secrets$enable(
type,
path = type,
description = NULL,
version = NULL

)

Arguments:

42 vault_client_token

type The type of secret backend (e.g., transit, kv).
path Specifies the path in which to enable the auth method. Defaults to be the same as type.
description Human-friendly description of the backend; will be returned by $list()

version Used only for the kv backend, where an integer is used to select between vault_client_kv1
and vault_client_kv2 engines.

Method list(): List enabled secret engines

Usage:
vault_client_secrets$list(detailed = FALSE)

Arguments:

detailed Logical, indicating if detailed output is wanted.

Method move(): Move the path that a secret engine is mounted at

Usage:
vault_client_secrets$move(from, to)

Arguments:

from Original path
to New path

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

To remove the default version 1 kv store and replace with a
version 2 store:
client$secrets$disable("/secret")
client$secrets$enable("kv", "/secret", version = 2)

cleanup
server$kill()

}

vault_client_token Vault Tokens

Description

Vault Tokens

Vault Tokens

vault_client_token 43

Details

Interact with vault’s token methods. This includes support for querying, creating and deleting to-
kens. Tokens are fundamental to the way that vault works, so there are a lot of methods here. The
vault documentation has a page devoted to token concepts: https://www.vaultproject.io/docs/concepts/tokens.html.
There is also a page with commands: https://www.vaultproject.io/docs/commands/token/index.html
- these have names very similar to the names used here.

Token Accessors

Many of the methods use "token accessors" - whenever a token is created, an "accessor" is created
at the same time. This is another token that can be used to perform limited actions with the token
such as

• Look up a token’s properties (not including the actual token ID)

• Look up a token’s capabilities on a path

• Revoke the token

However, accessors cannot be used to login, nor to retrieve the actual token itself.

Super class

vaultr::vault_client_object -> vault_client_token

Methods

Public methods:
• vault_client_token$new()

• vault_client_token$list()

• vault_client_token$capabilities()

• vault_client_token$capabilities_self()

• vault_client_token$capabilities_accessor()

• vault_client_token$client()

• vault_client_token$create()

• vault_client_token$lookup()

• vault_client_token$lookup_self()

• vault_client_token$lookup_accessor()

• vault_client_token$renew()

• vault_client_token$renew_self()

• vault_client_token$revoke()

• vault_client_token$revoke_self()

• vault_client_token$revoke_accessor()

• vault_client_token$revoke_and_orphan()

• vault_client_token$role_read()

• vault_client_token$role_list()

• vault_client_token$role_write()

44 vault_client_token

• vault_client_token$role_delete()

• vault_client_token$tidy()

• vault_client_token$login()

Method new(): Create a vault_client_token object. Not typically called by users.

Usage:
vault_client_token$new(api_client)

Arguments:
api_client A vault_api_client object

Method list(): List token accessors, returning a character vector

Usage:
vault_client_token$list()

Method capabilities(): Fetch the capabilities of a token on the given paths. The capabilities
returned will be derived from the policies that are on the token, and from the policies to which the
token is entitled to through the entity and entity’s group memberships.

Usage:
vault_client_token$capabilities(path, token)

Arguments:
path Vector of paths on which capabilities are being queried
token Single token for which capabilities are being queried

Method capabilities_self(): As for the capabilities method, but for the client token used
to make the request.

Usage:
vault_client_token$capabilities_self(path)

Arguments:
path Vector of paths on which capabilities are being queried

Method capabilities_accessor(): As for the capabilities method, but using a token
accessor rather than a token itself.

Usage:
vault_client_token$capabilities_accessor(path, accessor)

Arguments:
path Vector of paths on which capabilities are being queried
accessor Accessor of the token for which capabilities are being queried

Method client():

Return the current client token

Usage:
vault_client_token$client()

Method create(): Create a new token

vault_client_token 45

Usage:
vault_client_token$create(
role_name = NULL,
id = NULL,
policies = NULL,
meta = NULL,
orphan = FALSE,
no_default_policy = FALSE,
max_ttl = NULL,
display_name = NULL,
num_uses = 0L,
period = NULL,
ttl = NULL,
wrap_ttl = NULL

)

Arguments:

role_name The name of the token role
id The ID of the client token. Can only be specified by a root token. Otherwise, the token ID

is a randomly generated value
policies A character vector of policies for the token. This must be a subset of the policies

belonging to the token making the request, unless root. If not specified, defaults to all the
policies of the calling token.

meta A named list of strings as metadata to pass through to audit devices.
orphan Logical, indicating if the token created should be an orphan (they will have no parent).

As such, they will not be automatically revoked by the revocation of any other token.
no_default_policy Logical, if TRUE, then the default policy will not be contained in this

token’s policy set.
max_ttl Provides a maximum lifetime for any tokens issued against this role, including peri-

odic tokens. Unlike direct token creation, where the value for an explicit max TTL is stored
in the token, for roles this check will always use the current value set in the role. The main
use of this is to provide a hard upper bound on periodic tokens, which otherwise can live
forever as long as they are renewed. This is an integer number of seconds

display_name The display name of the token
num_uses Maximum number of uses that a token can have. This can be used to create a one-

time-token or limited use token. The default, or the value of 0, has no limit to the number
of uses.

period If specified, the token will be periodic; it will have no maximum TTL (unless a max_ttl
is also set) but every renewal will use the given period. Requires a root/sudo token to use.

ttl The TTL period of the token, provided as "1h", where hour is the largest suffix. If not
provided, the token is valid for the default lease TTL, or indefinitely if the root policy is
used.

wrap_ttl Indicates that the secret should be wrapped. This is discussed in the vault documenta-
tion: https://www.vaultproject.io/docs/concepts/response-wrapping.html When this option
is used, vault will take the response it would have sent to an HTTP client and instead insert
it into the cubbyhole of a single-use token, returning that single-use token instead. Logi-
cally speaking, the response is wrapped by the token, and retrieving it requires an unwrap

46 vault_client_token

operation against this token (see the $unwrap method vault_client. Must be specified as a
valid duration (e.g., 1h).

Method lookup(): Returns information about the client token

Usage:
vault_client_token$lookup(token = NULL)

Arguments:

token The token to lookup

Method lookup_self(): Returns information about the current client token (as if calling
$lookup with the token the client is using.

Usage:
vault_client_token$lookup_self()

Method lookup_accessor(): Returns information about the client token from the accessor.

Usage:
vault_client_token$lookup_accessor(accessor)

Arguments:

accessor The token accessor to lookup

Method renew(): Renews a lease associated with a token. This is used to prevent the expiration
of a token, and the automatic revocation of it. Token renewal is possible only if there is a lease
associated with it.

Usage:
vault_client_token$renew(token, increment = NULL)

Arguments:

token The token to renew
increment An optional requested lease increment can be provided. This increment may be

ignored. If given, it should be a duration (e.g., 1h).

Method renew_self(): Renews a lease associated with the calling token. This is used to
prevent the expiration of a token, and the automatic revocation of it. Token renewal is possible
only if there is a lease associated with it. This is equivalent to calling $renew() with the client
token.

Usage:
vault_client_token$renew_self(increment = NULL)

Arguments:

increment An optional requested lease increment can be provided. This increment may be
ignored. If given, it should be a duration (e.g., 1h).

Method revoke(): Revokes a token and all child tokens. When the token is revoked, all dynamic
secrets generated with it are also revoked.

Usage:
vault_client_token$revoke(token)

vault_client_token 47

Arguments:

token The token to revoke

Method revoke_self(): Revokes the token used to call it and all child tokens. When the token
is revoked, all dynamic secrets generated with it are also revoked. This is equivalent to calling
$revoke() with the client token.

Usage:
vault_client_token$revoke_self()

Method revoke_accessor(): Revoke the token associated with the accessor and all the child
tokens. This is meant for purposes where there is no access to token ID but there is need to revoke
a token and its children.

Usage:
vault_client_token$revoke_accessor(accessor)

Arguments:

accessor Accessor of the token to revoke.

Method revoke_and_orphan(): Revokes a token but not its child tokens. When the token is
revoked, all secrets generated with it are also revoked. All child tokens are orphaned, but can be
revoked subsequently using /auth/token/revoke/. This is a root-protected method.

Usage:
vault_client_token$revoke_and_orphan(token)

Arguments:

token The token to revoke

Method role_read(): Fetches the named role configuration.

Usage:
vault_client_token$role_read(role_name)

Arguments:

role_name The name of the token role.

Method role_list(): List available token roles.

Usage:
vault_client_token$role_list()

Method role_write(): Creates (or replaces) the named role. Roles enforce specific behaviour
when creating tokens that allow token functionality that is otherwise not available or would require
sudo/root privileges to access. Role parameters, when set, override any provided options to the
create endpoints. The role name is also included in the token path, allowing all tokens created
against a role to be revoked using the /sys/leases/revoke-prefix endpoint.

Usage:

48 vault_client_token

vault_client_token$role_write(
role_name,
allowed_policies = NULL,
disallowed_policies = NULL,
orphan = NULL,
period = NULL,
renewable = NULL,
explicit_max_ttl = NULL,
path_suffix = NULL,
bound_cidrs = NULL,
token_type = NULL

)

Arguments:

role_name Name for the role - this will be used later to refer to the role (e.g., in $create and
other $role_* methods.

allowed_policies Character vector of policies allowed for this role. If set, tokens can be
created with any subset of the policies in this list, rather than the normal semantics of
tokens being a subset of the calling token’s policies. The parameter is a comma-delimited
string of policy names. If at creation time no_default_policy is not set and "default" is
not contained in disallowed_policies, the "default" policy will be added to the created token
automatically.

disallowed_policies Character vector of policies forbidden for this role. If set, success-
ful token creation via this role will require that no policies in the given list are requested.
Adding "default" to this list will prevent "default" from being added automatically to created
tokens.

orphan If TRUE, then tokens created against this policy will be orphan tokens (they will have
no parent). As such, they will not be automatically revoked by the revocation of any other
token.

period A duration (e.g., 1h). If specified, the token will be periodic; it will have no maximum
TTL (unless an "explicit-max-ttl" is also set) but every renewal will use the given period.
Requires a root/sudo token to use.

renewable Set to FALSE to disable the ability of the token to be renewed past its initial TTL.
The default value of TRUE will allow the token to be renewable up to the system/mount
maximum TTL.

explicit_max_ttl An integer number of seconds. Provides a maximum lifetime for any to-
kens issued against this role, including periodic tokens. Unlike direct token creation, where
the value for an explicit max TTL is stored in the token, for roles this check will always use
the current value set in the role. The main use of this is to provide a hard upper bound on
periodic tokens, which otherwise can live forever as long as they are renewed. This is an
integer number of seconds.

path_suffix A string. If set, tokens created against this role will have the given suffix as
part of their path in addition to the role name. This can be useful in certain scenarios,
such as keeping the same role name in the future but revoking all tokens created against
it before some point in time. The suffix can be changed, allowing new callers to have the
new suffix as part of their path, and then tokens with the old suffix can be revoked via
/sys/leases/revoke-prefix.

vault_client_token 49

bound_cidrs Character vector of CIDRS. If set, restricts usage of the generated token to client
IPs falling within the range of the specified CIDR(s). Unlike most other role parameters,
this is not reevaluated from the current role value at each usage; it is set on the token itself.
Root tokens with no TTL will not be bound by these CIDRs; root tokens with TTLs will be
bound by these CIDRs.

token_type Specifies the type of tokens that should be returned by the role. If either service
or batch is specified, that kind of token will always be returned. If default-service,
then service tokens will be returned unless the client requests a batch type token at token
creation time. If default-batch, then batch tokens will be returned unless the client
requests a service type token at token creation time.

Method role_delete(): Delete a named token role

Usage:
vault_client_token$role_delete(role_name)

Arguments:
role_name The name of the role to delete

Method tidy(): Performs some maintenance tasks to clean up invalid entries that may remain
in the token store. Generally, running this is not needed unless upgrade notes or support personnel
suggest it. This may perform a lot of I/O to the storage method so should be used sparingly.

Usage:
vault_client_token$tidy()

Method login(): Unlike other auth backend login methods, this does not actually log in to the
vault. Instead it verifies that a token can be used to communicate with the vault.

Usage:
vault_client_token$login(token = NULL, quiet = FALSE)

Arguments:
token The token to test
quiet Logical scalar, set to TRUE to suppress informational messages.

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

There are lots of token methods here:
client$token

To demonstrate, it will be useful to create a restricted
policy that can only read from the /secret path
rules <- 'path "secret/*" {policy = "read"}'
client$policy$write("read-secret", rules)
client$write("/secret/path", list(key = "value"))

Create a token that has this policy

50 vault_client_tools

token <- client$auth$token$create(policies = "read-secret")
alice <- vaultr::vault_client(addr = server$addr)
alice$login(method = "token", token = token)
alice$read("/secret/path")

client$token$lookup(token)

We can query the capabilities of this token
client$token$capabilities("secret/path", token)

Tokens are not safe to pass around freely because they *are*
the ability to login, but the `token$create` command also
provides an accessor:
accessor <- attr(token, "info")$accessor

It is not possible to derive the token from the accessor, but
we can use the accessor to ask vault what it could do if it
did have the token (and do things like revoke the token)
client$token$capabilities_accessor("secret/path", accessor)

client$token$revoke_accessor(accessor)
try(client$token$capabilities_accessor("secret/path", accessor))

cleanup
server$kill()

}

vault_client_tools Vault Tools

Description

Vault Tools

Vault Tools

Details

Interact with vault’s cryptographic tools. This provides support for high-quality random numbers
and cryptographic hashes. This functionality is also available through the transit secret engine.

Super class

vaultr::vault_client_object -> vault_client_tools

Methods

Public methods:
• vault_client_tools$new()

• vault_client_tools$random()

vault_client_tools 51

• vault_client_tools$hash()

Method new(): Create a vault_client_tools object. Not typically called by users.

Usage:
vault_client_tools$new(api_client)

Arguments:
api_client A vault_api_client object

Method random(): Generates high-quality random bytes of the specified length. This is totally
independent of R’s random number stream and provides random numbers suitable for crypto-
graphic purposes.

Usage:
vault_client_tools$random(bytes = 32, format = "hex")

Arguments:
bytes Number of bytes to generate (as an integer)
format The output format to produce; must be one of hex (a single hex string such as d1189e2f83b72ab6),

base64 (a single base64 encoded string such as 8TDJekY0mYs=) or raw (a raw vector of
length bytes).

Method hash(): Generates a cryptographic hash of given data using the specified algorithm.

Usage:
vault_client_tools$hash(data, algorithm = NULL, format = "hex")

Arguments:
data A raw vector of data to hash. To generate a raw vector from an R object, one option

is to use unserialize(x, NULL) but be aware that version information may be included.
Alternatively, for a string, one might use charToRaw.

algorithm A string indicating the hash algorithm to use. The exact set of supported algo-
rithms may depend by vault server version, but as of version 1.0.0 vault supports sha2-224,
sha2-256, sha2-384 and sha2-512. The default is sha2-256.

format The format of the output - must be one of hex or base64.

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

Random bytes in hex
client$tools$random()
base64
client$tools$random(format = "base64")
raw
client$tools$random(10, format = "raw")

Hash data:
data <- charToRaw("hello vault")
will produce 55e702...92efd40c2a4

52 vault_client_transit

client$tools$hash(data)

sha2-512 hash:
client$tools$hash(data, "sha2-512")

cleanup
server$kill()

}

vault_client_transit Transit Engine

Description

Transit Engine

Transit Engine

Details

Interact with vault’s transit engine. This is useful for encrypting arbitrary data without storing
it in the vault - like "cryptography as a service" or "encryption as a service". The transit secrets
engine can also sign and verify data; generate hashes and HMACs of data; and act as a source of
random bytes. See https://www.vaultproject.io/docs/secrets/transit/index.html for an introduction
to the capabilities of the transit engine.

Super class

vaultr::vault_client_object -> vault_client_transit

Methods

Public methods:
• vault_client_transit$new()

• vault_client_transit$custom_mount()

• vault_client_transit$key_create()

• vault_client_transit$key_read()

• vault_client_transit$key_list()

• vault_client_transit$key_delete()

• vault_client_transit$key_update()

• vault_client_transit$key_rotate()

• vault_client_transit$key_export()

• vault_client_transit$data_encrypt()

• vault_client_transit$data_decrypt()

• vault_client_transit$data_rewrap()

• vault_client_transit$datakey_create()

vault_client_transit 53

• vault_client_transit$random()

• vault_client_transit$hash()

• vault_client_transit$hmac()

• vault_client_transit$sign()

• vault_client_transit$verify_signature()

• vault_client_transit$verify_hmac()

• vault_client_transit$key_backup()

• vault_client_transit$key_restore()

• vault_client_transit$key_trim()

Method new(): Create a vault_client_transit object. Not typically called by users.

Usage:
vault_client_transit$new(api_client, mount)

Arguments:

api_client A vault_api_client object
mount Mount point for the backend

Method custom_mount(): Set up a vault_client_transit object at a custom mount. For
example, suppose you mounted the transit secret backend at /transit2 you might use tr
<- vault$secrets$transit$custom_mount("/transit2") - this pattern is repeated for other
secret and authentication backends.

Usage:
vault_client_transit$custom_mount(mount)

Arguments:

mount String, indicating the path that the engine is mounted at.

Method key_create(): Create a new named encryption key of the specified type. The values
set here cannot be changed after key creation.

Usage:
vault_client_transit$key_create(
name,
key_type = NULL,
convergent_encryption = NULL,
derived = NULL,
exportable = NULL,
allow_plaintext_backup = NULL

)

Arguments:

name Name for the key. This will be used in all future interactions with the key - the key itself
is not returned.

key_type Specifies the type of key to create. The default is aes256-gcm96. The currently-
supported types are:
• aes256-gcm96: AES-256 wrapped with GCM using a 96-bit nonce size AEAD (sym-

metric, supports derivation and convergent encryption)

54 vault_client_transit

• chacha20-poly1305: ChaCha20-Poly1305 AEAD (symmetric, supports derivation and
convergent encryption)

• ed25519: ED25519 (asymmetric, supports derivation). When using derivation, a sign
operation with the same context will derive the same key and signature; this is a signing
analogue to convergent_encryption

• ecdsa-p256: ECDSA using the P-256 elliptic curve (asymmetric)
• rsa-2048: RSA with bit size of 2048 (asymmetric)
• rsa-4096: RSA with bit size of 4096 (asymmetric)

convergent_encryption Logical with default of FALSE. If TRUE, then the key will support
convergent encryption, where the same plaintext creates the same ciphertext. This requires
derived to be set to true. When enabled, each encryption(/decryption/rewrap/datakey) oper-
ation will derive a nonce value rather than randomly generate it.

derived Specifies if key derivation is to be used. If enabled, all encrypt/decrypt requests to this
named key must provide a context which is used for key derivation (default is FALSE).

exportable Enables keys to be exportable. This allows for all the valid keys in the key ring to
be exported. Once set, this cannot be disabled (default is FALSE).

allow_plaintext_backup If set, enables taking backup of named key in the plaintext format.
Once set, this cannot be disabled (default is FALSE).

Method key_read(): Read information about a previously generated key. The returned object
shows the creation time of each key version; the values are not the keys themselves. Depending
on the type of key, different information may be returned, e.g. an asymmetric key will return its
public key in a standard format for the type.

Usage:
vault_client_transit$key_read(name)

Arguments:

name The name of the key to read

Method key_list(): List names of all keys

Usage:
vault_client_transit$key_list()

Method key_delete(): Delete a key by name. It will no longer be possible to decrypt any
data encrypted with the named key. Because this is a potentially catastrophic operation, the
deletion_allowed tunable must be set using $key_update().

Usage:
vault_client_transit$key_delete(name)

Arguments:

name The name of the key to delete.

Method key_update(): This method allows tuning configuration values for a given key. (These
values are returned during a read operation on the named key.)

Usage:

vault_client_transit 55

vault_client_transit$key_update(
name,
min_decryption_version = NULL,
min_encryption_version = NULL,
deletion_allowed = NULL,
exportable = NULL,
allow_plaintext_backup = NULL

)

Arguments:
name The name of the key to update
min_decryption_version Specifies the minimum version of ciphertext allowed to be decrypted,

as an integer (default is 0). Adjusting this as part of a key rotation policy can prevent old
copies of ciphertext from being decrypted, should they fall into the wrong hands. For sig-
natures, this value controls the minimum version of signature that can be verified against.
For HMACs, this controls the minimum version of a key allowed to be used as the key for
verification.

min_encryption_version Specifies the minimum version of the key that can be used to en-
crypt plaintext, sign payloads, or generate HMACs, as an integer (default is 0). Must be 0
(which will use the latest version) or a value greater or equal to min_decryption_version.

deletion_allowed Specifies if the key is allowed to be deleted, as a logical (default is FALSE).
exportable Enables keys to be exportable. This allows for all the valid keys in the key ring to

be exported. Once set, this cannot be disabled.
allow_plaintext_backup If set, enables taking backup of named key in the plaintext format.

Once set, this cannot be disabled.

Method key_rotate(): Rotates the version of the named key. After rotation, new plaintext
requests will be encrypted with the new version of the key. To upgrade ciphertext to be encrypted
with the latest version of the key, use the rewrap endpoint. This is only supported with keys that
support encryption and decryption operations.

Usage:
vault_client_transit$key_rotate(name)

Arguments:
name The name of the key to rotate

Method key_export(): Export the named key. If version is specified, the specific version will
be returned. If latest is provided as the version, the current key will be provided. Depending on
the type of key, different information may be returned. The key must be exportable to support this
operation and the version must still be valid.
For more details see https://github.com/hashicorp/vault/issues/2667 where HashiCorp says "Part
of the "contract" of transit is that the key is never exposed outside of Vault. We added the ability
to export keys because some enterprises have key escrow requirements, but it leaves a permanent
mark in the key metadata. I suppose we could at some point allow importing a key and also leave
such a mark."

Usage:
vault_client_transit$key_export(name, key_type, version = NULL)

Arguments:

56 vault_client_transit

name Name of the key to export
key_type Specifies the type of the key to export. Valid values are encryption-key, signing-key

and hmac-key.
version Specifies the version of the key to read. If omitted, all versions of the key will be

returned. If the version is set to latest, the current key will be returned

Method data_encrypt(): This endpoint encrypts the provided plaintext using the named key.

Usage:
vault_client_transit$data_encrypt(
key_name,
data,
key_version = NULL,
context = NULL

)

Arguments:

key_name Specifies the name of the encryption key to encrypt against.
data Data to encrypt, as a raw vector
key_version Key version to use, as an integer. If not set, uses the latest version. Must be

greater than or equal to the key’s min_encryption_version, if set.
context Specifies the context for key derivation. This is required if key derivation is enabled

for this key. Must be a raw vector.

Method data_decrypt(): Decrypts the provided ciphertext using the named key.

Usage:
vault_client_transit$data_decrypt(key_name, data, context = NULL)

Arguments:

key_name Specifies the name of the encryption key to decrypt with.
data The data to decrypt. Must be a string, as returned by $data_encrypt.
context Specifies the context for key derivation. This is required if key derivation is enabled

for this key. Must be a raw vector.

Method data_rewrap(): Rewraps the provided ciphertext using the latest version of the named
key. Because this never returns plaintext, it is possible to delegate this functionality to untrusted
users or scripts.

Usage:
vault_client_transit$data_rewrap(
key_name,
data,
key_version = NULL,
context = NULL

)

Arguments:

key_name Specifies the name of the encryption key to re-encrypt against
data The data to decrypt. Must be a string, as returned by $data_encrypt.

vault_client_transit 57

key_version Specifies the version of the key to use for the operation. If not set, uses the latest
version. Must be greater than or equal to the key’s min_encryption_version, if set.

context Specifies the context for key derivation. This is required if key derivation is enabled
for this key. Must be a raw vector.

Method datakey_create(): This endpoint generates a new high-entropy key and the value
encrypted with the named key. Optionally return the plaintext of the key as well.

Usage:
vault_client_transit$datakey_create(
name,
plaintext = FALSE,
bits = NULL,
context = NULL

)

Arguments:

name Specifies the name of the encryption key to use to encrypt the datakey
plaintext Logical, indicating if the plaintext key should be returned.
bits Specifies the number of bits in the desired key. Can be 128, 256, or 512.
context Specifies the context for key derivation. This is required if key derivation is enabled

for this key. Must be a raw vector.

Method random(): Generates high-quality random bytes of the specified length. This is totally
independent of R’s random number stream and provides random numbers suitable for crypto-
graphic purposes.

Usage:
vault_client_transit$random(bytes = 32, format = "hex")

Arguments:

bytes Number of bytes to generate (as an integer)
format The output format to produce; must be one of hex (a single hex string such as d1189e2f83b72ab6),

base64 (a single base64 encoded string such as 8TDJekY0mYs=) or raw (a raw vector of
length bytes).

Method hash(): Generates a cryptographic hash of given data using the specified algorithm.

Usage:
vault_client_transit$hash(data, algorithm = NULL, format = "hex")

Arguments:

data A raw vector of data to hash. To generate a raw vector from an R object, one option
is to use unserialize(x, NULL) but be aware that version information may be included.
Alternatively, for a string, one might use charToRaw.

algorithm A string indicating the hash algorithm to use. The exact set of supported algo-
rithms may depend by vault server version, but as of version 1.0.0 vault supports sha2-224,
sha2-256, sha2-384 and sha2-512. The default is sha2-256.

format The format of the output - must be one of hex or base64.

58 vault_client_transit

Method hmac(): This endpoint returns the digest of given data using the specified hash algorithm
and the named key. The key can be of any type supported by the transit engine; the raw key will
be marshalled into bytes to be used for the HMAC function. If the key is of a type that supports
rotation, the latest (current) version will be used.

Usage:
vault_client_transit$hmac(name, data, key_version = NULL, algorithm = NULL)

Arguments:

name Specifies the name of the encryption key to generate hmac against
data The input data, as a raw vector
key_version Specifies the version of the key to use for the operation. If not set, uses the latest

version. Must be greater than or equal to the key’s min_encryption_version, if set.
algorithm Specifies the hash algorithm to use. Currently-supported algorithms are sha2-224,

sha2-256, sha2-384 and sha2-512. The default is sha2-256.

Method sign(): Returns the cryptographic signature of the given data using the named key and
the specified hash algorithm. The key must be of a type that supports signing.

Usage:
vault_client_transit$sign(
name,
data,
key_version = NULL,
hash_algorithm = NULL,
prehashed = FALSE,
signature_algorithm = NULL,
context = NULL

)

Arguments:

name Specifies the name of the encryption key to use for signing
data The input data, as a raw vector
key_version Specifies the version of the key to use for signing. If not set, uses the latest

version. Must be greater than or equal to the key’s min_encryption_version, if set.
hash_algorithm Specifies the hash algorithm to use. Currently-supported algorithms are sha2-224,

sha2-256, sha2-384 and sha2-512. The default is sha2-256.
prehashed Set to true when the input is already hashed. If the key type is rsa-2048 or

rsa-4096, then the algorithm used to hash the input should be indicated by the hash_algorithm
parameter.

signature_algorithm When using a RSA key, specifies the RSA signature algorithm to use
for signing. Supported signature types are pss (the default) and pkcs1v15.

context Specifies the context for key derivation. This is required if key derivation is enabled
for this key. Must be a raw vector.

Method verify_signature(): Determine whether the provided signature is valid for the given
data.

Usage:

vault_client_transit 59

vault_client_transit$verify_signature(
name,
data,
signature,
hash_algorithm = NULL,
signature_algorithm = NULL,
context = NULL,
prehashed = FALSE

)

Arguments:
name Name of the key
data Data to verify, as a raw vector
signature The signed data, as a string.
hash_algorithm Specifies the hash algorithm to use. This can also be specified as part of the

URL (see $sign and $hmac for details).
signature_algorithm When using a RSA key, specifies the RSA signature algorithm to use

for signature verification
context Specifies the context for key derivation. This is required if key derivation is enabled

for this key. Must be a raw vector.
prehashed Set to TRUE when the input is already hashed

Method verify_hmac(): Determine whether the provided signature is valid for the given data.
Usage:
vault_client_transit$verify_hmac(
name,
data,
signature,
hash_algorithm = NULL,
signature_algorithm = NULL,
context = NULL,
prehashed = FALSE

)

Arguments:
name Name of the key
data Data to verify, as a raw vector
signature The signed data, as a string.
hash_algorithm Specifies the hash algorithm to use. This can also be specified as part of the

URL (see $sign and $hmac for details).
signature_algorithm When using a RSA key, specifies the RSA signature algorithm to use

for signature verification
context Specifies the context for key derivation. This is required if key derivation is enabled

for this key. Must be a raw vector.
prehashed Set to TRUE when the input is already hashed

Method key_backup(): Returns a plaintext backup of a named key. The backup contains all the
configuration data and keys of all the versions along with the HMAC key. The response from this
endpoint can be used with $key_restore to restore the key.

60 vault_client_transit

Usage:
vault_client_transit$key_backup(name)

Arguments:

name Name of the key to backup

Method key_restore(): Restores the backup as a named key. This will restore the key config-
urations and all the versions of the named key along with HMAC keys. The input to this method
should be the output of $key_restore method.

Usage:
vault_client_transit$key_restore(name, backup, force = FALSE)

Arguments:

name Name of the restored key.
backup Backed up key data to be restored. This should be the output from the $key_backup

endpoint.
force Logical. If TRUE, then force the restore to proceed even if a key by this name already

exists.

Method key_trim(): This endpoint trims older key versions setting a minimum version for the
keyring. Once trimmed, previous versions of the key cannot be recovered.

Usage:
vault_client_transit$key_trim(name, min_version)

Arguments:

name Key to trim
min_version The minimum version for the key ring. All versions before this version will be

permanently deleted. This value can at most be equal to the lesser of min_decryption_version
and min_encryption_version. This is not allowed to be set when either min_encryption_version
or min_decryption_version is set to zero.

Examples

server <- vaultr::vault_test_server(if_disabled = message)
if (!is.null(server)) {

client <- server$client()

client$secrets$enable("transit")
transit <- client$secrets$transit

Before encrypting anything, create a key. Note that it will
not be returned to you, and is accessed purely by name
transit$key_create("test")

Some text to encrypt
plaintext <- "hello world"

Encrypted:
cyphertext <- transit$data_encrypt("test", charToRaw(plaintext))

vault_resolve_secrets 61

Decrypt the data
res <- transit$data_decrypt("test", cyphertext)
rawToChar(res)

This approach works with R objects too, if used with serialise.
First, serialise an R object to a raw vector:
data <- serialize(mtcars, NULL)

Then encrypt this data:
enc <- transit$data_encrypt("test", data)

The resulting string can be safely passed around (e.g., over
email) or written to disk, and can later be decrypted by
anyone who has access to the "test" key in the vault:
data2 <- transit$data_decrypt("test", enc)

Once decrypted, the data can be "unserialised" back into an R
object:
unserialize(data2)

cleanup
server$kill()

}

vault_resolve_secrets Resolve secrets from R objects

Description

Use vault to resolve secrets. This is a convenience function that wraps a pattern that we have used
in a few applications of vault. The idea is to allow replacement of data in configuration with special
strings that indicate that the string refers to a vault secret. This function resolves those secrets.

Usage

vault_resolve_secrets(x, ..., login = TRUE, vault_args = NULL)

Arguments

x List of values, some of which may refer to vault secrets (see Details for pattern).
Any values that are not strings or do not match the pattern of a secret are left
as-is.

... Args to be passed to vault_client call.

login Login method to be passed to call to vault_client.

vault_args As an alternative to using login and ..., a list of (named) arguments can be
provided here, equivalent to the full set of arguments that you might pass to
vault_client. If provided, then login is ignored and if additional arguments are
provided through ... an error will be thrown.

62 vault_resolve_secrets

Details

For each element of the data, if a string matches the form:

VAULT:<path to secret>:<field>

then it will be treated as a vault secret and resolved. The <path to get> will be something
like /secret/path/password and the <field> the name of a field in the key/value data stored
at that path. For example, suppose you have the data list(username = "alice", password =
"s3cret!") stored at /secret/database/user, then the string

VAULT:/secret/database/user:password

would refer to the value s3cret!

Value

List of properties with any vault secrets resolved.

Examples

server <- vaultr::vault_test_server(if_disabled = message)

if (!is.null(server)) {
client <- server$client()
The example from above:
client$write("/secret/database/user",

list(username = "alice", password = "s3cret!"))

A list of data that contains a mix of secrets to be resolved
and other data:
x <- list(user = "alice",

password = "VAULT:/secret/database/user:password",
port = 5678)

Explicitly pass in the login details and resolve the secrets:
vaultr::vault_resolve_secrets(x, login = "token", token = server$token,

addr = server$addr)

Alternatively, if appropriate environment variables are set
then this can be done more easily:
if (requireNamespace("withr", quietly = TRUE)) {

env <- c(VAULTR_AUTH_METHOD = "token",
VAULT_TOKEN = server$token,
VAULT_ADDR = server$addr)

withr::with_envvar(env, vault_resolve_secrets(x))
}

}

vault_test_server 63

vault_test_server Control a test vault server

Description

Control a server for use with testing. This is designed to be used only by other packages that wish
to run tests against a vault server. You will need to set VAULTR_TEST_SERVER_BIN_PATH to point at
the directory containing the vault binary.

Usage

vault_test_server(https = FALSE, init = TRUE, if_disabled = testthat::skip)

vault_test_server_install(
path = NULL,
quiet = FALSE,
version = "1.0.0",
platform = vault_platform()

)

Arguments

https Logical scalar, indicating if a https-using server should be created, rather than
the default vault dev-mode server. This is still entirely insecure, and uses self
signed certificates that are bundled with the package.

init Logical scalar, indicating if the https-using server should be initialised.

if_disabled Callback function to run if the vault server is not enabled. The default, designed
to be used within tests, is testthat::skip. Alternatively, inspect the $enabled
property of the returned object.

path Path in which to install vault test server. Leave as NULL to use the VAULTR_TEST_SERVER_BIN_PATH
environment variable.

quiet Suppress progress bars on install

version Version of vault to install

platform For testing, overwrite the platform vault is being installed on, with either "win-
dows", "darwin" or "linux".

Details

Once created with vault_test_server, a server will stay alive for as long as the R process is alive
or until the vault_server_instance object goes out of scope and is garbage collected. Calling
$kill() will explicitly stop the server, but this is not strictly needed. See below for methods to
control the server instance.

The function vault_test_server_install will install a test server, but only if the user sets the
following environmental variables:

• VAULTR_TEST_SERVER_INSTALL to "true" to opt in to the download.

64 vault_test_server

• VAULTR_TEST_SERVER_BIN_PATH to the directory where the binary should be downloaded to.

• NOT_CRAN to "true" to indicate this is not running on CRAN as it requires installation of a
binary from a website.

This will download a ~100MB binary from https://vaultproject.io so use with care. It is intended
only for use in automated testing environments.

Warning

Starting a server in test mode must not be used for production under any circumstances. As the name
suggests, vault_test_server is a server suitable for tests only and lacks any of the features re-
quired to make vault secure. Please see https://www.vaultproject.io/docs/concepts/dev-server.html
for more information

The vault_test_server_install function will download a binary from HashiCorp in order to use
a vault server. Use this function with care. The download will happen from https://releases.hashicorp.com/vault
(over https). This function is primarily designed to be used from continuous integration services
only and for local use you are strongly recommended to curate your own installations.

Super class

vaultr::vault_client_object -> vault_server_instance

Public fields

port The vault port (read-only).

addr The vault address; this is suitable for using with vault_client (read-only).

token The vault root token, from when the testing vault server was created. If the vault is rekeyed
this will no longer be accurate (read-only).

keys Key shares from when the vault was initialised (read-only).

cacert Path to the https certificate, if running in https mode (read-only).

Methods

Public methods:
• vault_server_instance$new()

• vault_server_instance$version()

• vault_server_instance$client()

• vault_server_instance$env()

• vault_server_instance$export()

• vault_server_instance$clear_cached_token()

• vault_server_instance$kill()

Method new(): Create a vault_server_instance object. Not typically called by users.

Usage:
vault_server_instance$new(bin, port, https, init)

Arguments:

vault_test_server 65

bin Path to the vault binary
port Port to use
https Logical, indicating if we should use TLS/https
init Logical, indicating if we should initialise

Method version(): Return the server version, as a numeric_version object.

Usage:
vault_server_instance$version()

Method client(): Create a new client that can use this server. The client will be a vault_client
object.

Usage:
vault_server_instance$client(login = TRUE, quiet = TRUE)

Arguments:
login Logical, indicating if the client should login to the server (default is TRUE).
quiet Logical, indicating if informational messages should be suppressed. Default is TRUE, in

contrast with most other methods.

Method env(): Return a named character vector of environment variables that can be used to
communicate with this vault server (VAULT_ADDR, VAULT_TOKEN, etc).

Usage:
vault_server_instance$env()

Method export(): Export the variables returned by the $env() method to the environment.
This makes them available to child processes.

Usage:
vault_server_instance$export()

Method clear_cached_token(): Clear any session-cached token for this server. This is in-
tended for testing new authentication backends.

Usage:
vault_server_instance$clear_cached_token()

Method kill(): Kill the server.

Usage:
vault_server_instance$kill()

Examples

Try and start a server; if one is not enabled (see details
above) then this will return NULL
server <- vault_test_server(if_disabled = message)

if (!is.null(server)) {
We now have a server running on an arbitrary high port - note
that we are running over http and in dev mode: this is not at

66 vault_test_server

all suitable for production use, just for tests
server$addr

Create clients using the client method - by default these are
automatically authenticated against the server
client <- server$client()
client$write("/secret/password", list(value = "s3cret!"))
client$read("/secret/password")

The server stops automatically when the server object is
garbage collected, or it can be turned off with the
'kill' method:
server$kill()
tryCatch(client$status(), error = function(e) message(e$message))

}

Index

data.frame, 12

numeric_version, 4, 65

vault_api_client, 3, 12, 14, 16, 20, 23, 26,
28, 31, 36, 39, 41, 44, 51, 53

vault_client, 2, 6, 27, 46, 61, 64, 65
vault_client_ (vault_client), 6
vault_client_audit, 7, 11
vault_client_auth, 7, 13
vault_client_auth_approle, 14, 15
vault_client_auth_github, 14, 20
vault_client_auth_userpass, 14, 22
vault_client_cubbyhole, 7, 25, 41
vault_client_kv1, 8, 27, 30, 31, 41, 42
vault_client_kv2, 25, 27, 30, 41, 42
vault_client_object, 34
vault_client_operator, 7, 35
vault_client_policy, 7, 38
vault_client_secrets, 7, 27, 40
vault_client_token, 7, 14, 42
vault_client_tools, 7, 50
vault_client_transit, 41, 52
vault_resolve_secrets, 61
vault_server_instance

(vault_test_server), 63
vault_test_server, 63
vault_test_server_install

(vault_test_server), 63
vaultr, 2
vaultr::vault_client_object, 3, 7, 11, 13,

15, 20, 22, 25, 28, 30, 36, 38, 41, 43,
50, 52, 64

67

	vaultr
	vault_api_client
	vault_client
	vault_client_audit
	vault_client_auth
	vault_client_auth_approle
	vault_client_auth_github
	vault_client_auth_userpass
	vault_client_cubbyhole
	vault_client_kv1
	vault_client_kv2
	vault_client_object
	vault_client_operator
	vault_client_policy
	vault_client_secrets
	vault_client_token
	vault_client_tools
	vault_client_transit
	vault_resolve_secrets
	vault_test_server
	Index

