
Package ‘tidygraph’
August 22, 2022

Type Package

Title A Tidy API for Graph Manipulation

Version 1.2.2

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description A graph, while not ``tidy'' in itself, can be thought of as two tidy
data frames describing node and edge data respectively. 'tidygraph'
provides an approach to manipulate these two virtual data frames using the
API defined in the 'dplyr' package, as well as provides tidy interfaces to
a lot of common graph algorithms.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.1

Imports tibble, dplyr (>= 0.8.5), igraph, magrittr, utils, rlang, R6,
tools, stats, tidyr, pillar, cli

URL https://tidygraph.data-imaginist.com,

https://github.com/thomasp85/tidygraph

BugReports https://github.com/thomasp85/tidygraph/issues

LinkingTo cpp11

Suggests network, data.tree, ape, graph, methods, testthat, covr,
seriation, netrankr, influenceR, NetSwan

SystemRequirements C++11

NeedsCompilation yes

Author Thomas Lin Pedersen [cre, aut]
(<https://orcid.org/0000-0002-5147-4711>)

Repository CRAN

Date/Publication 2022-08-22 07:20:02 UTC

1

https://tidygraph.data-imaginist.com
https://github.com/thomasp85/tidygraph
https://github.com/thomasp85/tidygraph/issues
https://orcid.org/0000-0002-5147-4711

2 activate

R topics documented:
activate . 2
as_tbl_graph.data.frame . 3
bind_graphs . 6
centrality . 7
component_games . 12
context_accessors . 13
create_graphs . 14
edge_types . 16
evolution_games . 17
graph_join . 19
graph_measures . 20
graph_types . 23
group_graph . 24
local_graph . 26
map_bfs . 28
map_bfs_back . 29
map_dfs . 31
map_dfs_back . 32
map_local . 34
morph . 35
morphers . 37
node_measures . 40
node_rank . 41
node_topology . 46
node_types . 47
pair_measures . 48
reroute . 50
sampling_games . 51
search_graph . 53
type_games . 54
with_graph . 56

Index 58

activate Determine the context of subsequent manipulations

Description

As a tbl_graph can be considered as a collection of two linked tables it is necessary to specify which
table is referenced during manipulations. The activate verb does just that and needs affects all
subsequent manipulations until a new table is activated. active is a simple query function to get the
currently acitve context. In addition to the use of activate it is also possible to activate nodes or
edges as part of the piping using the %N>% and %E>% pipes respectively. Do note that this approach
somewhat obscures what is going on and is thus only recommended for quick, one-line, fixes in
interactive use.

as_tbl_graph.data.frame 3

Usage

activate(.data, what)

active(x)

lhs %N>% rhs

lhs %E>% rhs

Arguments

.data, x, lhs A tbl_graph or a grouped_tbl_graph

what What should get activated? Possible values are nodes or edges.

rhs A function to pipe into

Value

A tbl_graph

Note

Activate will ungroup a grouped_tbl_graph.

Examples

gr <- create_complete(5) %>%
activate(nodes) %>%
mutate(class = sample(c('a', 'b'), 5, TRUE)) %>%
activate(edges) %>%
arrange(from)

The above could be achieved using the special pipes as well
gr <- create_complete(5) %N>%

mutate(class = sample(c('a', 'b'), 5, TRUE)) %E>%
arrange(from)

But as you can see it obscures what part of the graph is being targeted

as_tbl_graph.data.frame

A data structure for tidy graph manipulation

4 as_tbl_graph.data.frame

Description

The tbl_graph class is a thin wrapper around an igraph object that provides methods for ma-
nipulating the graph using the tidy API. As it is just a subclass of igraph every igraph method
will work as expected. A grouped_tbl_graph is the equivalent of a grouped_df where either the
nodes or the edges has been grouped. The grouped_tbl_graph is not constructed directly but by
using the group_by() verb. After creation of a tbl_graph the nodes are activated by default. The
context can be changed using the activate() verb and affects all subsequent operations. Chang-
ing context automatically drops any grouping. The current active context can always be extracted
with as_tibble(), which drops the graph structure and just returns a tbl_df or a grouped_df de-
pending on the state of the tbl_graph. The returned context can be overriden by using the active
argument in as_tibble().

Usage

S3 method for class 'data.frame'
as_tbl_graph(x, directed = TRUE, ...)

S3 method for class 'Node'
as_tbl_graph(x, directed = TRUE, mode = "out", ...)

S3 method for class 'dendrogram'
as_tbl_graph(x, directed = TRUE, mode = "out", ...)

S3 method for class 'graphNEL'
as_tbl_graph(x, ...)

S3 method for class 'graphAM'
as_tbl_graph(x, ...)

S3 method for class 'graphBAM'
as_tbl_graph(x, ...)

S3 method for class 'hclust'
as_tbl_graph(x, directed = TRUE, mode = "out", ...)

S3 method for class 'igraph'
as_tbl_graph(x, ...)

S3 method for class 'list'
as_tbl_graph(x, directed = TRUE, node_key = "name", ...)

S3 method for class 'matrix'
as_tbl_graph(x, directed = TRUE, ...)

S3 method for class 'network'
as_tbl_graph(x, ...)

S3 method for class 'phylo'

as_tbl_graph.data.frame 5

as_tbl_graph(x, directed = NULL, ...)

S3 method for class 'evonet'
as_tbl_graph(x, directed = TRUE, ...)

tbl_graph(nodes = NULL, edges = NULL, directed = TRUE, node_key = "name")

as_tbl_graph(x, ...)

Default S3 method:
as_tbl_graph(x, ...)

is.tbl_graph(x)

Arguments

x An object convertible to a tbl_graph

directed Should the constructed graph be directed (defaults to TRUE)

... Arguments passed on to the conversion function

mode In case directed = TRUE should the edge direction be away from node or to-
wards. Possible values are "out" (default) or "in".

node_key The name of the column in nodes that character represented to and from columns
should be matched against. If NA the first column is always chosen. This setting
has no effect if to and from are given as integers.

nodes A data.frame containing information about the nodes in the graph. If edges$to
and/or edges$from are characters then they will be matched to the column
named according to node_key in nodes, if it exists. If not, they will be matched
to the first column.

edges A data.frame containing information about the edges in the graph. The termi-
nal nodes of each edge must either be encoded in a to and from column, or in
the two first columns, as integers. These integers refer to nodes index.

Details

Constructors are provided for most data structures that resembles networks. If a class provides an
igraph::as.igraph() method it is automatically supported.

Value

A tbl_graph object

Functions

• as_tbl_graph(data.frame): Method for edge table and set membership table

• as_tbl_graph(Node): Method to deal with Node objects from the data.tree package

• as_tbl_graph(dendrogram): Method for dendrogram objects

6 bind_graphs

• as_tbl_graph(graphNEL): Method for handling graphNEL objects from the graph package
(on Bioconductor)

• as_tbl_graph(graphAM): Method for handling graphAM objects from the graph package
(on Bioconductor)

• as_tbl_graph(graphBAM): Method for handling graphBAM objects from the graph package
(on Bioconductor)

• as_tbl_graph(hclust): Method for hclust objects

• as_tbl_graph(igraph): Method for igraph object. Simply subclasses the object into a
tbl_graph

• as_tbl_graph(list): Method for adjacency lists and lists of node and edge tables

• as_tbl_graph(matrix): Method for edgelist, adjacency and incidence matrices

• as_tbl_graph(network): Method to handle network objects from the network package.
Requires this packages to work.

• as_tbl_graph(phylo): Method for handling phylo objects from the ape package

• as_tbl_graph(evonet): Method for handling evonet objects from the ape package

• as_tbl_graph(default): Default method. tries to call igraph::as.igraph() on the input.

Examples

rstat_nodes <- data.frame(name = c("Hadley", "David", "Romain", "Julia"))
rstat_edges <- data.frame(from = c(1, 1, 1, 2, 3, 3, 4, 4, 4),

to = c(2, 3, 4, 1, 1, 2, 1, 2, 3))
tbl_graph(nodes = rstat_nodes, edges = rstat_edges)

bind_graphs Add graphs, nodes, or edges to a tbl_graph

Description

These functions are tbl_graph pendants to dplyr::bind_rows() that allows you to grow your
tbl_graph by adding rows to either the nodes data, the edges data, or both. As with bind_rows()
columns are matched by name and are automatically filled with NA if the column doesn’t exist in
some instances. In the case of bind_graphs() the graphs are automatically converted to tbl_graph
objects prior to binding. The edges in each graph will continue to reference the nodes in the graph
where they originated, meaning that their terminal node indexes will be shifted to match the new
index of the node in the combined graph. This means the bind_graphs() always result in a dis-
connected graph. See graph_join() for merging graphs on common nodes.

Usage

bind_graphs(.data, ...)

bind_nodes(.data, ...)

bind_edges(.data, ..., node_key = "name")

centrality 7

Arguments

.data A tbl_graph, or a list of tbl_graph objects (for bind_graphs()).

... In case of bind_nodes() and bind_edges() data.frames to add. In the case of
bind_graphs() objects that are convertible to tbl_graph using as_tbl_graph().

node_key The name of the column in nodes that character represented to and from columns
should be matched against. If NA the first column is always chosen. This setting
has no effect if to and from are given as integers.

Value

A tbl_graph containing the new data

Examples

graph <- create_notable('bull')
new_graph <- create_notable('housex')

Add nodes
graph %>% bind_nodes(data.frame(new = 1:4))

Add edges
graph %>% bind_edges(data.frame(from = 1, to = 4:5))

Add graphs
graph %>% bind_graphs(new_graph)

centrality Calculate node and edge centrality

Description

The centrality of a node measures the importance of node in the network. As the concept of im-
portance is ill-defined and dependent on the network and the questions under consideration, many
centrality measures exist. tidygraph provides a consistent set of wrappers for all the centrality
measures implemented in igraph for use inside dplyr::mutate() and other relevant verbs. All
functions provided by tidygraph have a consistent naming scheme and automatically calls the
function on the graph, returning a vector with measures ready to be added to the node data. Further
tidygraph provides access to the netrankr engine for centrality calculations and define a number
of centrality measures based on that, as well as provide a manual mode for specifying more-or-less
any centrality score.

Usage

centrality_alpha(
weights = NULL,
alpha = 1,

8 centrality

exo = 1,
tol = 1e-07,
loops = FALSE

)

centrality_authority(
weights = NULL,
scale = TRUE,
options = igraph::arpack_defaults

)

centrality_betweenness(
weights = NULL,
directed = TRUE,
cutoff = NULL,
nobigint = TRUE,
normalized = FALSE

)

centrality_power(exponent = 1, rescale = FALSE, tol = 1e-07, loops = FALSE)

centrality_closeness(
weights = NULL,
mode = "out",
normalized = FALSE,
cutoff = NULL

)

centrality_eigen(
weights = NULL,
directed = FALSE,
scale = TRUE,
options = igraph::arpack_defaults

)

centrality_hub(weights = NULL, scale = TRUE, options = igraph::arpack_defaults)

centrality_pagerank(
weights = NULL,
directed = TRUE,
damping = 0.85,
personalized = NULL

)

centrality_subgraph(loops = FALSE)

centrality_degree(
weights = NULL,

centrality 9

mode = "out",
loops = TRUE,
normalized = FALSE

)

centrality_edge_betweenness(weights = NULL, directed = TRUE, cutoff = NULL)

centrality_manual(relation = "dist_sp", aggregation = "sum", ...)

centrality_closeness_harmonic()

centrality_closeness_residual()

centrality_closeness_generalised(alpha)

centrality_integration()

centrality_communicability()

centrality_communicability_odd()

centrality_communicability_even()

centrality_subgraph_odd()

centrality_subgraph_even()

centrality_katz(alpha = NULL)

centrality_betweenness_network(netflowmode = "raw")

centrality_betweenness_current()

centrality_betweenness_communicability()

centrality_betweenness_rsp_simple(rspxparam = 1)

centrality_betweenness_rsp_net(rspxparam = 1)

centrality_information()

centrality_decay(alpha = 1)

centrality_random_walk()

centrality_expected()

10 centrality

Arguments

weights The weight of the edges to use for the calculation. Will be evaluated in the
context of the edge data.

alpha Relative importance of endogenous vs exogenous factors (centrality_alpha),
the exponent to the power transformation of the distance metric (centrality_closeness_generalised),
the base of power transformation (centrality_decay), or the attenuation factor
(centrality_katz)

exo The exogenous factors of the nodes. Either a scalar or a number number for each
node. Evaluated in the context of the node data.

tol Tolerance for near-singularities during matrix inversion

loops Should loops be included in the calculation

scale Should the output be scaled between 0 and 1

options Settings passed on to igraph::arpack()

directed Should direction of edges be used for the calculations

cutoff maximum path length to use during calculations

nobigint Should big integers be avoided during calculations

normalized Should the output be normalized

exponent The decay rate for the Bonacich power centrality

rescale Should the output be scaled to sum up to 1

mode How should edges be followed. Ignored for undirected graphs

damping The damping factor of the page rank algorithm

personalized The probability of jumping to a node when abandoning a random walk. Evalu-
ated in the context of the node data.

relation The indirect relation measure type to be used in netrankr::indirect_relations

aggregation The aggregation type to use on the indirect relations to be used in netrankr::aggregate_positions

... Arguments to pass on to netrankr::indirect_relations

netflowmode The return type of the network flow distance, either 'raw' or 'frac'

rspxparam inverse temperature parameter

Value

A numeric vector giving the centrality measure of each node.

Functions

• centrality_alpha(): Wrapper for igraph::alpha_centrality()

• centrality_authority(): Wrapper for igraph::authority_score()

• centrality_betweenness(): Wrapper for igraph::betweenness() and igraph::estimate_betweenness()

• centrality_power(): Wrapper for igraph::power_centrality()

• centrality_closeness(): Wrapper for igraph::closeness() and igraph::estimate_closeness()

• centrality_eigen(): Wrapper for igraph::eigen_centrality()

centrality 11

• centrality_hub(): Wrapper for igraph::hub_score()

• centrality_pagerank(): Wrapper for igraph::page_rank()

• centrality_subgraph(): Wrapper for igraph::subgraph_centrality()

• centrality_degree(): Wrapper for igraph::degree() and igraph::strength()

• centrality_edge_betweenness(): Wrapper for igraph::edge_betweenness()

• centrality_manual(): Manually specify your centrality score using the netrankr frame-
work (netrankr)

• centrality_closeness_harmonic(): centrality based on inverse shortest path (netrankr)

• centrality_closeness_residual(): centrality based on 2-to-the-power-of negative short-
est path (netrankr)

• centrality_closeness_generalised(): centrality based on alpha-to-the-power-of nega-
tive shortest path (netrankr)

• centrality_integration(): centrality based on 1 − (x − 1)/max(x) transformation of
shortest path (netrankr)

• centrality_communicability(): centrality an exponential tranformation of walk counts
(netrankr)

• centrality_communicability_odd(): centrality an exponential tranformation of odd walk
counts (netrankr)

• centrality_communicability_even(): centrality an exponential tranformation of even walk
counts (netrankr)

• centrality_subgraph_odd(): subgraph centrality based on odd walk counts (netrankr)

• centrality_subgraph_even(): subgraph centrality based on even walk counts (netrankr)

• centrality_katz(): centrality based on walks penalizing distant nodes (netrankr)

• centrality_betweenness_network(): Betweenness centrality based on network flow (netrankr)

• centrality_betweenness_current(): Betweenness centrality based on current flow (netrankr)

• centrality_betweenness_communicability(): Betweenness centrality based on commu-
nicability (netrankr)

• centrality_betweenness_rsp_simple(): Betweenness centrality based on simple randomised
shortest path dependencies (netrankr)

• centrality_betweenness_rsp_net(): Betweenness centrality based on net randomised
shortest path dependencies (netrankr)

• centrality_information(): centrality based on inverse sum of resistance distance between
nodes (netrankr)

• centrality_decay(): based on a power transformation of the shortest path (netrankr)

• centrality_random_walk(): centrality based on the inverse sum of expected random walk
length between nodes (netrankr)

• centrality_expected(): Expected centrality ranking based on exact rank probability (netrankr)

12 component_games

Examples

create_notable('bull') %>%
activate(nodes) %>%
mutate(importance = centrality_alpha())

Most centrality measures are for nodes but not all
create_notable('bull') %>%

activate(edges) %>%
mutate(importance = centrality_edge_betweenness())

component_games Graph games based on connected components

Description

This set of graph creation algorithms simulate the topology by, in some way, connecting subgraphs.
The nature of their algorithm is described in detail at the linked igraph documentation.

Usage

play_blocks(n, size_blocks, p_between, directed = TRUE, loops = FALSE)

play_blocks_hierarchy(n, size_blocks, rho, p_within, p_between)

play_islands(n_islands, size_islands, p_within, m_between)

play_smallworld(
n_dim,
dim_size,
order,
p_rewire,
loops = FALSE,
multiple = FALSE

)

Arguments

n The number of nodes in the graph.

size_blocks The number of vertices in each block
p_between, p_within

The probability of edges within and between groups/blocks

directed Should the resulting graph be directed

loops Are loop edges allowed

rho The fraction of vertices per cluster

n_islands The number of densely connected islands

context_accessors 13

size_islands The number of nodes in each island
m_between The number of edges between groups/islands
n_dim, dim_size

The dimension and size of the starting lattice
order The neighborhood size to create connections from
p_rewire The rewiring probability of edges
multiple Are multiple edges allowed

Value

A tbl_graph object

Functions

• play_blocks(): Create graphs by sampling from stochastic block model. See igraph::sample_sbm()
• play_blocks_hierarchy(): Create graphs by sampling from the hierarchical stochastic block

model. See igraph::sample_hierarchical_sbm()

• play_islands(): Create graphs with fixed size and edge probability of subgraphs as well as
fixed edge count between subgraphs. See igraph::sample_islands()

• play_smallworld(): Create graphs based on the Watts-Strogatz small- world model. See
igraph::sample_smallworld()

See Also

Other graph games: evolution_games, sampling_games, type_games

Examples

plot(play_islands(4, 10, 0.7, 3))

context_accessors Access graph, nodes, and edges directly inside verbs

Description

These three functions makes it possible to directly access either the node data, the edge data or the
graph itself while computing inside verbs. It is e.g. possible to add an attribute from the node data
to the edges based on the terminating nodes of the edge, or extract some statistics from the graph
itself to use in computations.

Usage

.G()

.N()

.E()

14 create_graphs

Value

Either a tbl_graph (.G()) or a tibble (.N())

Functions

• .G(): Get the tbl_graph you’re currently working on

• .N(): Get the nodes data from the graph you’re currently working on

• .E(): Get the edges data from the graph you’re currently working on

Examples

Get data from the nodes while computing for the edges
create_notable('bull') %>%

activate(nodes) %>%
mutate(centrality = centrality_power()) %>%
activate(edges) %>%
mutate(mean_centrality = (.N()$centrality[from] + .N()$centrality[to])/2)

create_graphs Create different types of well-defined graphs

Description

These functions creates a long list of different types of well-defined graphs, that is, their structure
is not based on any randomisation. All of these functions are shallow wrappers around a range of
igraph::make_* functions but returns tbl_graph rather than igraph objects.

Usage

create_ring(n, directed = FALSE, mutual = FALSE)

create_path(n, directed = FALSE, mutual = FALSE)

create_chordal_ring(n, w)

create_de_bruijn(alphabet_size, label_size)

create_empty(n, directed = FALSE)

create_bipartite(n1, n2, directed = FALSE, mode = "out")

create_citation(n)

create_complete(n)

create_notable(name)

create_graphs 15

create_kautz(alphabet_size, label_size)

create_lattice(dim, directed = FALSE, mutual = FALSE, circular = FALSE)

create_star(n, directed = FALSE, mutual = FALSE, mode = "out")

create_tree(n, children, directed = TRUE, mode = "out")

Arguments

n, n1, n2 The number of nodes in the graph

directed Should the graph be directed

mutual Should mutual edges be created in case of the graph being directed

w A matrix specifying the additional edges in the chordan ring. See igraph::make_chordal_ring()

alphabet_size The number of unique letters in the alphabet used for the graph

label_size The number of characters in each node

mode In case of a directed, non-mutual, graph should the edges flow 'out' or 'in'

name The name of a notable graph. See a complete list in igraph::make_graph()

dim The dimensions of the lattice

circular Should each dimension in the lattice wrap around

children The number of children each node has in the tree (if possible)

Value

A tbl_graph

Functions

• create_ring(): Create a simple ring graph

• create_path(): Create a simple path

• create_chordal_ring(): Create a chordal ring

• create_de_bruijn(): Create a de Bruijn graph with the specified alphabet and label size

• create_empty(): Create a graph with no edges

• create_bipartite(): Create a full bipartite graph

• create_citation(): Create a full citation graph

• create_complete(): Create a complete graph (a graph where all nodes are connected)

• create_notable(): Create a graph based on its name. See igraph::make_graph()

• create_kautz(): Create a Kautz graph with the specified alphabet and label size

• create_lattice(): Create a multidimensional grid of nodes

• create_star(): Create a star graph (A single node in the center connected to all other nodes)

• create_tree(): Create a tree graph

16 edge_types

Examples

Create a complete graph with 10 nodes
create_complete(10)

edge_types Querying edge types

Description

These functions lets the user query whether the edges in a graph is of a specific type. All functions
return a logical vector giving whether each edge in the graph corresponds to the specific type.

Usage

edge_is_multiple()

edge_is_loop()

edge_is_mutual()

edge_is_from(from)

edge_is_to(to)

edge_is_between(from, to, ignore_dir = !graph_is_directed())

edge_is_incident(i)

Arguments

from, to, i A vector giving node indices
ignore_dir Is both directions of the edge allowed

Value

A logical vector of the same length as the number of edges in the graph

Functions

• edge_is_multiple(): Query whether each edge has any parallel siblings
• edge_is_loop(): Query whether each edge is a loop
• edge_is_mutual(): Query whether each edge has a sibling going in the reverse direction
• edge_is_from(): Query whether an edge goes from a set of nodes
• edge_is_to(): Query whether an edge goes to a set of nodes
• edge_is_between(): Query whether an edge goes between two sets of nodes
• edge_is_incident(): Query whether an edge goes from or to a set of nodes

evolution_games 17

Examples

create_star(10, directed = TRUE, mutual = TRUE) %>%
activate(edges) %>%
sample_frac(0.7) %>%
mutate(single_edge = !edge_is_mutual())

evolution_games Graph games based on evolution

Description

This games create graphs through different types of evolutionary mechanisms (not necessarily in a
biological sense). The nature of their algorithm is described in detail at the linked igraph documen-
tation.

Usage

play_citation_age(
n,
growth = 1,
bins = n/7100,
p_pref = (1:(bins + 1))^-3,
directed = TRUE

)

play_forestfire(
n,
p_forward,
p_backward = p_forward,
growth = 1,
directed = TRUE

)

play_growing(n, growth = 1, directed = TRUE, citation = FALSE)

play_barabasi_albert(
n,
power,
growth = 1,
growth_dist = NULL,
use_out = FALSE,
appeal_zero = 1,
directed = TRUE,
method = "psumtree"

)

play_barabasi_albert_aging(

18 evolution_games

n,
power,
power_age,
growth = 1,
growth_dist = NULL,
bins = 300,
use_out = FALSE,
appeal_zero = 1,
appeal_zero_age = 0,
directed = TRUE,
coefficient = 1,
coefficient_age = 1,
window = NULL

)

Arguments

n The number of nodes in the graph.

growth The number of edges added at each iteration

bins The number of aging bins

p_pref The probability that an edge will be made to an age bin.

directed Should the resulting graph be directed
p_forward, p_backward

Forward and backward burning probability

citation Should a citation graph be created

power The power of the preferential attachment

growth_dist The distribution of the number of added edges at each iteration

use_out Should outbound edges be used for calculating citation probability

appeal_zero The appeal value for unconnected nodes

method The algorithm to use for graph creation. Either 'psumtree', 'psumtree-multiple',
or 'bag'

power_age The aging exponent
appeal_zero_age

The appeal value of nodes without age

coefficient The coefficient of the degree dependent part of attrictiveness
coefficient_age

The coefficient of the age dependent part of attrictiveness

window The aging window to take into account when calculating the preferential attrac-
tion

Value

A tbl_graph object

graph_join 19

Functions

• play_citation_age(): Create citation graphs based on a specific age link probability. See
igraph::sample_last_cit()

• play_forestfire(): Create graphs by simulating the spead of fire in a forest. See igraph::sample_forestfire()

• play_growing(): Create graphs by adding a fixed number of edges at each iteration. See
igraph::sample_growing()

• play_barabasi_albert(): Create graphs based on the Barabasi-Alberts preferential attach-
ment model. See igraph::sample_pa()

• play_barabasi_albert_aging(): Create graphs based on the Barabasi-Alberts preferential
attachment model, incoorporating node age preferrence. See igraph::sample_pa_age().

See Also

play_traits() and play_citation_type() for an evolutionary algorithm based on different node
types

Other graph games: component_games, sampling_games, type_games

Examples

plot(play_forestfire(50, 0.5))

graph_join Join graphs on common nodes

Description

This graph-specific join method makes a full join on the nodes data and updates the edges in the
joining graph so they matches the new indexes of the nodes in the resulting graph. Node and edge
data is combined using dplyr::bind_rows() semantic, meaning that data is matched by column
name and filled with NA if it is missing in either of the graphs.

Usage

graph_join(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)

Arguments

x A tbl_graph

y An object convertible to a tbl_graph using as_tbl_graph()

by A character vector of variables to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

20 graph_measures

To join by different variables on x and y, use a named vector. For example, by =
c("a" = "b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
= c("a", "b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by = c("a" = "b", "c" =
"d") will match x$a to y$b and x$c to y$d.
To perform a cross-join, generating all combinations of x and y, use by = character().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

Value

A tbl_graph containing the merged graph

Examples

gr1 <- create_notable('bull') %>%
activate(nodes) %>%
mutate(name = letters[1:5])

gr2 <- create_ring(10) %>%
activate(nodes) %>%
mutate(name = letters[4:13])

gr1 %>% graph_join(gr2)

graph_measures Graph measurements

Description

This set of functions provide wrappers to a number of ìgraphs graph statistic algorithms. As for
the other wrappers provided, they are intended for use inside the tidygraph framework and it is
thus not necessary to supply the graph being computed on as the context is known. All of these
functions are guarantied to return scalars making it easy to compute with them.

Usage

graph_adhesion()

graph_assortativity(attr, in_attr = NULL, directed = TRUE)

graph_automorphisms(sh = "fm")

graph_measures 21

graph_clique_num()

graph_clique_count(min = NULL, max = NULL, subset = NULL)

graph_component_count(type = "weak")

graph_motif_count(size = 3, cut.prob = rep(0, size))

graph_diameter(weights = NULL, directed = TRUE, unconnected = TRUE)

graph_girth()

graph_radius(mode = "out")

graph_mutual_count()

graph_asym_count()

graph_unconn_count()

graph_size()

graph_order()

graph_reciprocity(ignore_loops = TRUE, ratio = FALSE)

graph_min_cut(capacity = NULL)

graph_mean_dist(directed = TRUE, unconnected = TRUE)

graph_modularity(group, weights = NULL)

Arguments

attr The node attribute to measure on
in_attr An alternative node attribute to use for incomming node. If NULL the attribute

given by type will be used
directed Should a directed graph be treated as directed
sh The splitting heuristics for the BLISS algorithm. Possible values are: ‘f’: first

non-singleton cell, ‘fl’: first largest non-singleton cell, ‘fs’: first smallest non-
singleton cell, ‘fm’: first maximally non-trivially connected non-singleton cell,
‘flm’: first largest maximally non-trivially connected non-singleton cell, ‘fsm’:
first smallest maximally non-trivially connected non-singleton cell.

min, max The upper and lower bounds of the cliques to be considered.
subset The indexes of the nodes to start the search from (logical or integer). If provided

only the cliques containing these nodes will be counted.
type The type of component to count, either ’weak’ or ’strong’. Ignored for undi-

rected graphs.

22 graph_measures

size The size of the motif.

cut.prob Numeric vector giving the probabilities that the search graph is cut at a certain
level. Its length should be the same as the size of the motif (the size argument).
By default no cuts are made.

weights Optional positive weight vector for calculating weighted distances. If the graph
has a weight edge attribute, then this is used by default.

unconnected Logical, what to do if the graph is unconnected. If FALSE, the function will
return a number that is one larger the largest possible diameter, which is always
the number of vertices. If TRUE, the diameters of the connected components
will be calculated and the largest one will be returned.

mode How should eccentricity be calculated. If "out" only outbound edges are fol-
lowed. If "in" only inbound are followed. If "all" all edges are followed.
Ignored for undirected graphs.

ignore_loops Logical. Should loops be ignored while calculating the reciprocity

ratio Should the old "ratio" approach from igraph < v0.6 be used

capacity The capacity of the edges

group The node grouping to calculate the modularity on

Value

A scalar, the type depending on the function

Functions

• graph_adhesion(): Gives the minimum edge connectivity. Wraps igraph::edge_connectivity()

• graph_assortativity(): Measures the propensity of similar nodes to be connected. Wraps
igraph::assortativity()

• graph_automorphisms(): Calculate the number of automorphisms of the graph. Wraps
igraph::automorphisms()

• graph_clique_num(): Get the size of the largest clique. Wraps igraph::clique_num()

• graph_clique_count(): Get the number of maximal cliques in the graph. Wraps igraph::count_max_cliques()

• graph_component_count(): Count the number of unconnected componenets in the graph.
Wraps igraph::count_components()

• graph_motif_count(): Count the number of motifs in a graph. Wraps igraph::count_motifs()

• graph_diameter(): Measures the length of the longest geodesic. Wraps igraph::diameter()

• graph_girth(): Measrues the length of the shortest circle in the graph. Wraps igraph::girth()

• graph_radius(): Measures the smallest eccentricity in the graph. Wraps igraph::radius()

• graph_mutual_count(): Counts the number of mutually connected nodes. Wraps igraph::dyad_census()

• graph_asym_count(): Counts the number of asymmetrically connected nodes. Wraps igraph::dyad_census()

• graph_unconn_count(): Counts the number of unconnected node pairs. Wraps igraph::dyad_census()

• graph_size(): Counts the number of edges in the graph. Wraps igraph::gsize()

• graph_order(): Counts the number of nodes in the graph. Wraps igraph::gorder()

graph_types 23

• graph_reciprocity(): Measures the proportion of mutual connections in the graph. Wraps
igraph::reciprocity()

• graph_min_cut(): Calculates the minimum number of edges to remove in order to split the
graph into two clusters. Wraps igraph::min_cut()

• graph_mean_dist(): Calculates the mean distance between all node pairs in the graph.
Wraps igraph::mean_distance()

• graph_modularity(): Calculates the modularity of the graph contingent on a provided node
grouping

Examples

Use e.g. to modify computations on nodes and edges
create_notable('meredith') %>%

activate(nodes) %>%
mutate(rel_neighbors = centrality_degree()/graph_order())

graph_types Querying graph types

Description

This set of functions lets the user query different aspects of the graph itself. They are all concerned
with wether the graph implements certain properties and will all return a logical scalar.

Usage

graph_is_simple()

graph_is_directed()

graph_is_bipartite()

graph_is_connected()

graph_is_tree()

graph_is_forest()

graph_is_dag()

graph_is_chordal()

graph_is_complete()

graph_is_isomorphic_to(graph, method = "auto", ...)

graph_is_subgraph_isomorphic_to(graph, method = "auto", ...)

24 group_graph

Arguments

graph The graph to compare structure to

method The algorithm to use for comparison

... Arguments passed on to the comparison methods. See igraph::is_isomorphic_to()
and igraph::is_subgraph_isomorphic_to()

Value

A logical scalar

Functions

• graph_is_simple(): Is the graph simple (no parallel edges)

• graph_is_directed(): Is the graph directed

• graph_is_bipartite(): Is the graph bipartite

• graph_is_connected(): Is the graph connected

• graph_is_tree(): Is the graph a tree

• graph_is_forest(): Is the graph an ensemble of multiple trees

• graph_is_dag(): Is the graph a directed acyclic graph

• graph_is_chordal(): Is the graph chordal

• graph_is_complete(): Is the graph fully connected

• graph_is_isomorphic_to(): Is the graph isomorphic to another graph. See igraph::is_isomorphic_to()

• graph_is_subgraph_isomorphic_to(): Is the graph an isomorphic subgraph to another
graph. see igraph::is_subgraph_isomorphic_to()

Examples

gr <- create_tree(50, 4)

with_graph(gr, graph_is_tree())

group_graph Group nodes and edges based on community structure

Description

These functions are wrappers around the various clustering functions provided by igraph. As with
the other wrappers they automatically use the graph that is being computed on, and otherwise passes
on its arguments to the relevant clustering function. The return value is always a numeric vector
of group memberships so that nodes or edges with the same number are part of the same group.
Grouping is predominantly made on nodes and currently the only grouping of edges supported is
biconnected components.

group_graph 25

Usage

group_components(type = "weak")

group_edge_betweenness(weights = NULL, directed = TRUE, n_groups = NULL)

group_fast_greedy(weights = NULL, n_groups = NULL)

group_infomap(weights = NULL, node_weights = NULL, trials = 10)

group_label_prop(weights = NULL, label = NULL, fixed = NULL)

group_leading_eigen(
weights = NULL,
steps = -1,
label = NULL,
options = igraph::arpack_defaults,
n_groups = NULL

)

group_louvain(weights = NULL)

group_optimal(weights = NULL)

group_spinglass(weights = NULL, ...)

group_walktrap(weights = NULL, steps = 4, n_groups = NULL)

group_biconnected_component()

Arguments

type The type of component to find. Either 'weak' or 'strong'
weights The weight of the edges to use for the calculation. Will be evaluated in the

context of the edge data.
directed Should direction of edges be used for the calculations
n_groups Integer scalar, the desired number of communities. If too low or two high, then

an error message is given.
node_weights The weight of the nodes to use for the calculation. Will be evaluated in the

context of the node data.
trials Number of times partition of the network should be attempted
label The initial groups of the nodes. Will be evaluated in the context of the node data.
fixed A logical vector determining which nodes should keep their initial groups. Will

be evaluated in the context of the node data.
steps The number of steps in the random walks
options Settings passed on to igraph::arpack()

... arguments passed on to igraph::cluster_spinglass()

26 local_graph

Value

a numeric vector with the membership for each node in the graph. The enumeration happens in
order based on group size progressing from the largest to the smallest group

Functions

• group_components(): Group by connected compenents using igraph::components()

• group_edge_betweenness(): Group densely connected nodes using igraph::cluster_edge_betweenness()

• group_fast_greedy(): Group nodes by optimising modularity using igraph::cluster_fast_greedy()

• group_infomap(): Group nodes by minimizing description length using igraph::cluster_infomap()

• group_label_prop(): Group nodes by propagating labels using igraph::cluster_label_prop()

• group_leading_eigen(): Group nodes based on the leading eigenvector of the modularity
matrix using igraph::cluster_leading_eigen()

• group_louvain(): Group nodes by multilevel optimisation of modularity using igraph::cluster_louvain()

• group_optimal(): Group nodes by optimising the moldularity score using igraph::cluster_optimal()

• group_spinglass(): Group nodes using simulated annealing with igraph::cluster_spinglass()

• group_walktrap(): Group nodes via short random walks using igraph::cluster_walktrap()

• group_biconnected_component(): Group edges by their membership of the maximal bin-
connected components using igraph::biconnected_components()

Examples

create_notable('tutte') %>%
activate(nodes) %>%
mutate(group = group_infomap())

local_graph Measures based on the neighborhood of each node

Description

These functions wraps a set of functions that all measures quantities of the local neighborhood of
each node. They all return a vector or list matching the node position.

Usage

local_size(order = 1, mode = "all", mindist = 0)

local_members(order = 1, mode = "all", mindist = 0)

local_triangles()

local_ave_degree(weights = NULL)

local_transitivity(weights = NULL)

local_graph 27

Arguments

order Integer giving the order of the neighborhood.

mode Character constant, it specifies how to use the direction of the edges if a directed
graph is analyzed. For ‘out’ only the outgoing edges are followed, so all vertices
reachable from the source vertex in at most order steps are counted. For ‘"in"’
all vertices from which the source vertex is reachable in at most order steps are
counted. ‘"all"’ ignores the direction of the edges. This argument is ignored for
undirected graphs.

mindist The minimum distance to include the vertex in the result.

weights An edge weight vector. For local_ave_degree: If this argument is given, the
average vertex strength is calculated instead of vertex degree. For local_transitivity:
if given weighted transitivity using the approach by A. Barrat will be calculated.

Value

A numeric vector or a list (for local_members) with elements corresponding to the nodes in the
graph.

Functions

• local_size(): The size of the neighborhood in a given distance from the node. (Note that
the node itself is included unless mindist > 0). Wraps igraph::ego_size().

• local_members(): The members of the neighborhood of each node in a given distance.
Wraps igraph::ego().

• local_triangles(): The number of triangles each node participate in. Wraps igraph::count_triangles().

• local_ave_degree(): Calculates the average degree based on the neighborhood of each
node. Wraps igraph::knn().

• local_transitivity(): Calculate the transitivity of each node, that is, the propensity for
the nodes neighbors to be connected. Wraps igraph::transitivity()

Examples

Get all neighbors of each graph
create_notable('chvatal') %>%

activate(nodes) %>%
mutate(neighborhood = local_members(mindist = 1))

These are equivalent
create_notable('chvatal') %>%

activate(nodes) %>%
mutate(n_neighbors = local_size(mindist = 1),

degree = centrality_degree()) %>%
as_tibble()

28 map_bfs

map_bfs Apply a function to nodes in the order of a breath first search

Description

These functions allow you to map over the nodes in a graph, by first performing a breath first search
on the graph and then mapping over each node in the order they are visited. The mapping function
will have access to the result and search statistics for all the nodes between itself and the root in the
search. To map over the nodes in the reverse direction use map_bfs_back().

Usage

map_bfs(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_lgl(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_chr(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_int(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_dbl(root, mode = "out", unreachable = FALSE, .f, ...)

Arguments

root The node to start the search from

mode How should edges be followed? 'out' only follows outbound edges, 'in' only
follows inbound edges, and 'all' follows all edges. This parameter is ignored
for undirected graphs.

unreachable Should the search jump to an unvisited node if the search is completed without
visiting all nodes.

.f A function to map over all nodes. See Details

... Additional parameters to pass to .f

Details

The function provided to .f will be called with the following arguments in addition to those supplied
through ...:

• graph: The full tbl_graph object

• node: The index of the node currently mapped over

• rank: The rank of the node in the search

• parent: The index of the node that led to the current node

• before: The index of the node that was visited before the current node

• after: The index of the node that was visited after the current node.

map_bfs_back 29

• dist: The distance of the current node from the root
• path: A table containing node, rank, parent, before, after, dist, and result columns

giving the values for each node leading to the current node. The result column will contain
the result of the mapping of each node in a list.

Instead of spelling out all of these in the function it is possible to simply name the ones needed and
use ... to catch the rest.

Value

map_bfs() returns a list of the same length as the number of nodes in the graph, in the order
matching the node order in the graph (that is, not in the order they are called). map_bfs_*() tries to
coerce its result into a vector of the classes logical (map_bfs_lgl), character (map_bfs_chr),
integer (map_bfs_int), or double (map_bfs_dbl). These functions will throw an error if they are
unsuccesful, so they are type safe.

See Also

Other node map functions: map_bfs_back(), map_dfs_back(), map_dfs()

Examples

Accumulate values along a search
create_tree(40, children = 3, directed = TRUE) %>%

mutate(value = round(runif(40)*100)) %>%
mutate(value_acc = map_bfs_dbl(node_is_root(), .f = function(node, path, ...) {
sum(.N()$value[c(node, path$node)])

}))

map_bfs_back Apply a function to nodes in the reverse order of a breath first search

Description

These functions allow you to map over the nodes in a graph, by first performing a breath first search
on the graph and then mapping over each node in the reverse order they are visited. The mapping
function will have access to the result and search statistics for all the nodes following itself in the
search. To map over the nodes in the original direction use map_bfs().

Usage

map_bfs_back(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_back_lgl(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_back_chr(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_back_int(root, mode = "out", unreachable = FALSE, .f, ...)

map_bfs_back_dbl(root, mode = "out", unreachable = FALSE, .f, ...)

30 map_bfs_back

Arguments

root The node to start the search from

mode How should edges be followed? 'out' only follows outbound edges, 'in' only
follows inbound edges, and 'all' follows all edges. This parameter is ignored
for undirected graphs.

unreachable Should the search jump to an unvisited node if the search is completed without
visiting all nodes.

.f A function to map over all nodes. See Details

... Additional parameters to pass to .f

Details

The function provided to .f will be called with the following arguments in addition to those supplied
through ...:

• graph: The full tbl_graph object

• node: The index of the node currently mapped over

• rank: The rank of the node in the search

• parent: The index of the node that led to the current node

• before: The index of the node that was visited before the current node

• after: The index of the node that was visited after the current node.

• dist: The distance of the current node from the root

• path: A table containing node, rank, parent, before, after, dist, and result columns
giving the values for each node reached from the current node. The result column will
contain the result of the mapping of each node in a list.

Instead of spelling out all of these in the function it is possible to simply name the ones needed and
use ... to catch the rest.

Value

map_bfs_back() returns a list of the same length as the number of nodes in the graph, in the order
matching the node order in the graph (that is, not in the order they are called). map_bfs_back_*()
tries to coerce its result into a vector of the classes logical (map_bfs_back_lgl), character
(map_bfs_back_chr), integer (map_bfs_back_int), or double (map_bfs_back_dbl). These
functions will throw an error if they are unsuccesful, so they are type safe.

See Also

Other node map functions: map_bfs(), map_dfs_back(), map_dfs()

map_dfs 31

Examples

Collect values from children
create_tree(40, children = 3, directed = TRUE) %>%

mutate(value = round(runif(40)*100)) %>%
mutate(child_acc = map_bfs_back_dbl(node_is_root(), .f = function(node, path, ...) {
if (nrow(path) == 0) .N()$value[node]
else {

sum(unlist(path$result[path$parent == node]))
}

}))

map_dfs Apply a function to nodes in the order of a depth first search

Description

These functions allow you to map over the nodes in a graph, by first performing a depth first search
on the graph and then mapping over each node in the order they are visited. The mapping function
will have access to the result and search statistics for all the nodes between itself and the root in the
search. To map over the nodes in the reverse direction use map_dfs_back().

Usage

map_dfs(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_lgl(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_chr(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_int(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_dbl(root, mode = "out", unreachable = FALSE, .f, ...)

Arguments

root The node to start the search from

mode How should edges be followed? 'out' only follows outbound edges, 'in' only
follows inbound edges, and 'all' follows all edges. This parameter is ignored
for undirected graphs.

unreachable Should the search jump to an unvisited node if the search is completed without
visiting all nodes.

.f A function to map over all nodes. See Details

... Additional parameters to pass to .f

32 map_dfs_back

Details

The function provided to .f will be called with the following arguments in addition to those supplied
through ...:

• graph: The full tbl_graph object

• node: The index of the node currently mapped over

• rank: The rank of the node in the search

• rank_out: The rank of the completion of the nodes subtree

• parent: The index of the node that led to the current node

• dist: The distance of the current node from the root

• path: A table containing node, rank, rank_out, parent, dist, and resultcolumns giving the values for each node leading to the current node. Theresult‘
column will contain the result of the mapping of each node in a list.

Instead of spelling out all of these in the function it is possible to simply name the ones needed and
use ... to catch the rest.

Value

map_dfs() returns a list of the same length as the number of nodes in the graph, in the order
matching the node order in the graph (that is, not in the order they are called). map_dfs_*() tries to
coerce its result into a vector of the classes logical (map_dfs_lgl), character (map_dfs_chr),
integer (map_dfs_int), or double (map_dfs_dbl). These functions will throw an error if they are
unsuccesful, so they are type safe.

See Also

Other node map functions: map_bfs_back(), map_bfs(), map_dfs_back()

Examples

Add a random integer to the last value along a search
create_tree(40, children = 3, directed = TRUE) %>%

mutate(child_acc = map_dfs_int(node_is_root(), .f = function(node, path, ...) {
last_val <- if (nrow(path) == 0) 0L else tail(unlist(path$result), 1)
last_val + sample(1:10, 1)

}))

map_dfs_back Apply a function to nodes in the reverse order of a depth first search

Description

These functions allow you to map over the nodes in a graph, by first performing a depth first search
on the graph and then mapping over each node in the reverse order they are visited. The mapping
function will have access to the result and search statistics for all the nodes following itself in the
search. To map over the nodes in the original direction use map_dfs().

map_dfs_back 33

Usage

map_dfs_back(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_back_lgl(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_back_chr(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_back_int(root, mode = "out", unreachable = FALSE, .f, ...)

map_dfs_back_dbl(root, mode = "out", unreachable = FALSE, .f, ...)

Arguments

root The node to start the search from

mode How should edges be followed? 'out' only follows outbound edges, 'in' only
follows inbound edges, and 'all' follows all edges. This parameter is ignored
for undirected graphs.

unreachable Should the search jump to an unvisited node if the search is completed without
visiting all nodes.

.f A function to map over all nodes. See Details

... Additional parameters to pass to .f

Details

The function provided to .f will be called with the following arguments in addition to those supplied
through ...:

• graph: The full tbl_graph object

• node: The index of the node currently mapped over

• rank: The rank of the node in the search

• rank_out: The rank of the completion of the nodes subtree

• parent: The index of the node that led to the current node

• dist: The distance of the current node from the root

• path: A table containing node, rank, rank_out, parent, dist, and resultcolumns giving the values for each node reached from the current node. Theresult‘
column will contain the result of the mapping of each node in a list.

Instead of spelling out all of these in the function it is possible to simply name the ones needed and
use ... to catch the rest.

Value

map_dfs_back() returns a list of the same length as the number of nodes in the graph, in the order
matching the node order in the graph (that is, not in the order they are called). map_dfs_back_*()
tries to coerce its result into a vector of the classes logical (map_dfs_back_lgl), character
(map_dfs_back_chr), integer (map_dfs_back_int), or double (map_dfs_back_dbl). These
functions will throw an error if they are unsuccesful, so they are type safe.

34 map_local

See Also

Other node map functions: map_bfs_back(), map_bfs(), map_dfs()

Examples

Collect values from the 2 closest layers of children in a dfs search
create_tree(40, children = 3, directed = TRUE) %>%

mutate(value = round(runif(40)*100)) %>%
mutate(child_acc = map_dfs_back(node_is_root(), .f = function(node, path, dist, ...) {

if (nrow(path) == 0) .N()$value[node]
else {

unlist(path$result[path$dist - dist <= 2])
}

}))

map_local Map a function over a graph representing the neighborhood of each
node

Description

This function extracts the neighborhood of each node as a graph and maps over each of these
neighborhood graphs. Conceptually it is similar to igraph::local_scan(), but it borrows the
type safe versions available in map_bfs() and map_dfs().

Usage

map_local(order = 1, mode = "all", mindist = 0, .f, ...)

map_local_lgl(order = 1, mode = "all", mindist = 0, .f, ...)

map_local_chr(order = 1, mode = "all", mindist = 0, .f, ...)

map_local_int(order = 1, mode = "all", mindist = 0, .f, ...)

map_local_dbl(order = 1, mode = "all", mindist = 0, .f, ...)

Arguments

order Integer giving the order of the neighborhood.

mode Character constant, it specifies how to use the direction of the edges if a directed
graph is analyzed. For ‘out’ only the outgoing edges are followed, so all vertices
reachable from the source vertex in at most order steps are counted. For ‘"in"’
all vertices from which the source vertex is reachable in at most order steps are
counted. ‘"all"’ ignores the direction of the edges. This argument is ignored for
undirected graphs.

mindist The minimum distance to include the vertex in the result.

morph 35

.f A function to map over all nodes. See Details

... Additional parameters to pass to .f

Details

The function provided to .f will be called with the following arguments in addition to those supplied
through ...:

• neighborhood: The neighborhood graph of the node

• graph: The full tbl_graph object

• node: The index of the node currently mapped over

The neighborhood graph will contain an extra node attribute called .central_node, which will be
TRUE for the node that the neighborhood is expanded from and FALSE for everything else.

Value

map_local() returns a list of the same length as the number of nodes in the graph, in the order
matching the node order in the graph. map_local_*() tries to coerce its result into a vector of the
classes logical (map_local_lgl), character (map_local_chr), integer (map_local_int), or
double (map_local_dbl). These functions will throw an error if they are unsuccesful, so they are
type safe.

Examples

Smooth out values over a neighborhood
create_notable('meredith') %>%

mutate(value = rpois(graph_order(), 5)) %>%
mutate(value_smooth = map_local_dbl(order = 2, .f = function(neighborhood, ...) {
mean(as_tibble(neighborhood, active = 'nodes')$value)

}))

morph Create a temporary alternative representation of the graph to compute
on

Description

The morph/unmorph verbs are used to create temporary representations of the graph, such as e.g.
its search tree or a subgraph. A morphed graph will accept any of the standard dplyr verbs, and
changed to the data is automatically propagated to the original graph when unmorphing. Tidygraph
comes with a range of morphers, but is it also possible to supply your own. See Details for the
requirement for custom morphers. The crystallise verb is used to extract the temporary graph
representation into a tibble containing one separate graph per row and a name and graph column
holding the name of each graph and the graph itself respectively. convert() is a shorthand for
performing both morph and crystallise along with extracting a single tbl_graph (defaults to the
first). For morphs were you know they only create a single graph, and you want to keep it, this is an
easy way.

36 morph

Usage

morph(.data, .f, ...)

unmorph(.data)

crystallise(.data)

crystallize(.data)

convert(.data, .f, ..., .select = 1, .clean = FALSE)

Arguments

.data A tbl_graph or a morphed_tbl_graph

.f A morphing function. See morphers for a list of provided one.

... Arguments passed on to the morpher

.select The graph to return during convert(). Either an index or the name as created
during crystallise().

.clean Should references to the node and edge indexes in the original graph be removed
when using convert

Details

It is only possible to change and add to node and edge data from a morphed state. Any filter-
ing/removal of nodes and edges will not result in removal from the main graph. However, nodes
and edges not present in the morphed state will be unaffected in the main graph when unmorphing
(if new columns were added during the morhped state they will be filled with NA).

Morphing an already morhped graph will unmorph prior to applying the new morph.

During a morphed state, the mapping back to the original graph is stored in .tidygraph_node_index
and .tidygraph_edge_index columns. These are accesible but protected, meaning that any changes
to them with e.g. mutate will be ignored. Furthermore, if the morph results in the merging of nodes
and/or edges the original data is stored in a .data column. This is protected as well.

When supplying your own morphers the morphing function should accept a tbl_graph as its first
input. The provided graph will already have nodes and edges mapped with a .tidygraph_node_index
and .tidygraph_edge_index column. The return value must be a tbl_graph or a list of tbl_graphs
and these must contain either a .tidygraph_node_index column or a .tidygraph_edge_index
column (or both). Note that it is possible for the morph to have the edges mapped back to the original
nodes and vice versa (e.g. as with to_linegraph). In that case the edge data in the morphed graph(s)
will contain a .tidygraph_node_index column and or the node data a .tidygraph_edge_index
column. If the morphing results in the collapse of multiple columns or edges the index columns
should be converted to list columns mapping the new node/edge back to all the nodes/edges it rep-
resents. Furthermore the original node/edge data should be collapsed to a list of tibbles, with the
row order matching the order in the index column element.

Value

A morphed_tbl_graph

morphers 37

Examples

create_notable('meredith') %>%
mutate(group = group_infomap()) %>%
morph(to_contracted, group) %>%
mutate(group_centrality = centrality_pagerank()) %>%
unmorph()

morphers Functions to generate alternate representations of graphs

Description

These functions are meant to be passed into morph() to create a temporary alternate representation
of the input graph. They are thus not meant to be called directly. See below for detail of each
morpher.

Usage

to_linegraph(graph)

to_subgraph(graph, ..., subset_by = NULL)

to_subcomponent(graph, node)

to_split(graph, ..., split_by = NULL)

to_components(graph, type = "weak")

to_complement(graph, loops = FALSE)

to_local_neighborhood(graph, node, order = 1, mode = "all")

to_dominator_tree(graph, root, mode = "out")

to_minimum_spanning_tree(graph, weights = NULL)

to_shortest_path(graph, from, to, mode = "out", weights = NULL)

to_bfs_tree(graph, root, mode = "out", unreachable = FALSE)

to_dfs_tree(graph, root, mode = "out", unreachable = FALSE)

to_simple(graph, remove_multiples = TRUE, remove_loops = TRUE)

to_contracted(graph, ..., simplify = TRUE)

to_unfolded_tree(graph, root, mode = "out")

38 morphers

to_directed(graph)

to_undirected(graph)

to_hierarchical_clusters(graph, method = "walktrap", weights = NULL, ...)

Arguments

graph A tbl_graph

... Arguments to pass on to filter(), group_by(), or the cluster algorithm (see
igraph::cluster_walktrap(), igraph::cluster_leading_eigen(), and igraph::cluster_edge_betweenness())

subset_by, split_by

Whether to create subgraphs based on nodes or edges

node The center of the neighborhood for to_local_neighborhood() and the node
to that should be included in the component for to_subcomponent()

type The type of component to split into. Either 'weak' or 'strong'

loops Should loops be included. Defaults to FALSE

order The radius of the neighborhood

mode How should edges be followed? 'out' only follows outbound edges, 'in' only
follows inbound edges, and 'all' follows all edges. This parameter is ignored
for undirected graphs.

root The root of the tree

weights Optional edge weights for the calculations

from, to The start and end node of the path

unreachable Should the search jump to a node in a new component when stuck.
remove_multiples

Should edges that run between the same nodes be reduced to one

remove_loops Should edges that start and end at the same node be removed

simplify Should edges in the contracted graph be simplified? Defaults to TRUE

method The clustering method to use. Either 'walktrap', 'leading_eigen', or 'edge_betweenness'

Value

A list of tbl_graphs

Functions

• to_linegraph(): Convert a graph to its line graph. When unmorphing node data will be
merged back into the original edge data. Edge data will be ignored.

• to_subgraph(): Convert a graph to a single subgraph. ... is evaluated in the same manner
as filter. When unmorphing all data in the subgraph will get merged back.

• to_subcomponent(): Convert a graph to a single component containing the specified node

morphers 39

• to_split(): Convert a graph into a list of separate subgraphs. ... is evaluated in the same
manner as group_by. When unmorphing all data in the subgraphs will get merged back, but
in the case of split_by = 'edges' only the first instance of node data will be used (as the
same node can be present in multiple subgraphs).

• to_components(): Split a graph into its separate components. When unmorphing all data in
the subgraphs will get merged back.

• to_complement(): Convert a graph into its complement. When unmorphing only node data
will get merged back.

• to_local_neighborhood(): Convert a graph into the local neighborhood around a single
node. When unmorphing all data will be merged back.

• to_dominator_tree(): Convert a graph into its dominator tree based on a specific root.
When unmorphing only node data will get merged back.

• to_minimum_spanning_tree(): Convert a graph into its minimum spanning tree/forest. When
unmorphing all data will get merged back.

• to_shortest_path(): Limit a graph to the shortest path between two nodes. When unmor-
phing all data is merged back.

• to_bfs_tree(): Convert a graph into a breath-first search tree based on a specific root. When
unmorphing only node data is merged back.

• to_dfs_tree(): Convert a graph into a depth-first search tree based on a specific root. When
unmorphing only node data is merged back.

• to_simple(): Collapse parallel edges and remove loops in a graph. When unmorphing all
data will get merged back

• to_contracted(): Combine multiple nodes into one. ... is evaluated in the same manner as
group_by. When unmorphing all data will get merged back.

• to_unfolded_tree(): Unfold a graph to a tree or forest starting from multiple roots (or one),
potentially duplicating nodes and edges.

• to_directed(): Make a graph directed in the direction given by from and to

• to_undirected(): Make a graph undirected

• to_hierarchical_clusters(): Convert a graph into a hierarchical clustering based on a
grouping

Examples

Compute only on a subgraph of every even node
create_notable('meredith') %>%

morph(to_subgraph, seq_len(graph_order()) %% 2 == 0) %>%
mutate(neighbour_count = centrality_degree()) %>%
unmorph()

40 node_measures

node_measures Querying node measures

Description

These functions are a collection of node measures that do not really fall into the class of centrality
measures. For lack of a better place they are collected under the node_* umbrella of functions.

Usage

node_eccentricity(mode = "out")

node_constraint(weights = NULL)

node_coreness(mode = "out")

node_diversity(weights)

node_bridging_score()

node_effective_network_size()

node_connectivity_impact()

node_closeness_impact()

node_fareness_impact()

Arguments

mode The way edges should be followed in the case of directed graphs.

weights The weights to use for each node during calculation

Value

A numeric vector of the same length as the number of nodes in the graph.

Functions

• node_eccentricity(): measure the maximum shortest path to all other nodes in the graph

• node_constraint(): measures Burts constraint of the node. See igraph::constraint()

• node_coreness(): measures the coreness of each node. See igraph::coreness()

• node_diversity(): measures the diversity of the node. See igraph::diversity()

• node_bridging_score(): measures Valente’s Bridging measures for detecting structural
bridges (influenceR)

node_rank 41

• node_effective_network_size(): measures Burt’s Effective Network Size indicating ac-
cess to structural holes in the network (influenceR)

• node_connectivity_impact(): measures the impact on connectivity when removing the
node (NetSwan)

• node_closeness_impact(): measures the impact on closeness when removing the node
(NetSwan)

• node_fareness_impact(): measures the impact on fareness (distance between all node pairs)
when removing the node (NetSwan)

Examples

Calculate Burt's Constraint for each node
create_notable('meredith') %>%

mutate(b_constraint = node_constraint())

node_rank Calculate node ranking

Description

This set of functions tries to calculate a ranking of the nodes in a graph so that nodes sharing certain
topological traits are in proximity in the resulting order. These functions are of great value when
composing matrix layouts and arc diagrams but could concievably be used for other things as well.

Usage

node_rank_hclust(
method = "average",
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_anneal(
cool = 0.5,
tmin = 1e-04,
swap_to_inversion = 0.5,
step_multiplier = 100,
reps = 1,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

42 node_rank

node_rank_branch_bound(
weighted_gradient = FALSE,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_traveller(
method = "two_opt",
...,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_two(
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_mds(
method = "cmdscale",
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_leafsort(
method = "average",
type = "OLO",
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_visual(
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank 43

node_rank_spectral(
normalized = FALSE,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_spin_out(
step = 25,
nstart = 10,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_spin_in(
step = 5,
sigma = seq(20, 1, length.out = 10),
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_quadratic(
criterion = "2SUM",
reps = 1,
step = 2 * graph_order(),
step_multiplier = 1.1,
temp_multiplier = 0.5,
maxsteps = 50,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_genetic(
...,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_rank_dendser(

44 node_rank

...,
dist = "shortest",
mode = "out",
weights = NULL,
algorithm = "automatic"

)

Arguments

method The method to use. See Functions section for reference

dist The algorithm to use for deriving a distance matrix from the graph. One of

• "shortest" (default): Use the shortest path between all nodes
• "euclidean": Calculate the L2 norm on the adjacency matrix of the graph
• "manhattan": Calculate the L1 norm on the adjacency matrix of the graph
• "maximum": Calculate the supremum norm on the adjacenecy matrix of the

graph
• "canberra": Calculate a weighted manhattan distance on the adjacency

matrix of the graph
• "binary": Calculate distance as the proportion of agreement between nodes

based on the adjacency matrix of the graph

or a function that takes a tbl_graph and return a dist object with a size match-
ing the order of the graph.

mode Which edges should be included in the distance calculation. For distance mea-
sures based on the adjacency matrix, 'out' will use the matrix as is, 'in' will
use the transpose, and 'all' will take the mean of the two. Defaults to 'out'.
Ignored for undirected graphs.

weights An edge variable to use as weight for the shortest path calculation if dist =
'shortest'

algorithm The algorithm to use for the shortest path calculation if dist = 'shortest'

cool cooling rate

tmin minimum temperature
swap_to_inversion

Proportion of swaps in local neighborhood search
step_multiplier

Multiplication factor for number of iterations per temperature

reps Number of repeats with random initialisation
weighted_gradient

minimize the weighted gradient measure? Defaults to FALSE

... Arguments passed on to other algorithms. See Functions section for reference

type The type of leaf reordering, either 'GW' to use the "GW" method or 'OLO' to
use the "OLO" method (both in seriation)

normalized Should the normalized laplacian of the similarity matrix be used?

step The number iterations to run per initialisation

node_rank 45

nstart The number of random initialisations to perform

sigma The variance around the diagonal to use for the weight matrix. Either a single
number or a decreasing sequence.

criterion The criterion to minimize. Either "LS" (Linear Seriation Problem), "2SUM"
(2-Sum Problem), "BAR" (Banded Anti-Robinson form), or "Inertia" (Inertia
criterion)

temp_multiplier

Temperature multiplication factor between 0 and 1

maxsteps The upper bound of iterations

Value

An integer vector giving the position of each node in the ranking

Functions

• node_rank_hclust(): Use hierarchical clustering to rank nodes (see stats::hclust() for
allowed methods)

• node_rank_anneal(): Use simulated annealing based on the "ARSA" method in seriation

• node_rank_branch_bound(): Use branch and bounds strategy to minimize the gradient mea-
sure (only feasable for small graphs). Will use "BBURCG" or "BBWRCG" in seriation
dependent on the weighted_gradient argument

• node_rank_traveller(): Minimize hamiltonian path length using a travelling salesperson
solver. See the the solve_TSP function in TSP for an overview of possible arguments

• node_rank_two(): Use Rank-two ellipse seriation to rank the nodes. Uses "R2E" method in
seriation

• node_rank_mds(): Rank by multidimensional scaling onto one dimension. method = 'cmdscale'
will use the classic scaling from stats, method = 'isoMDS' will use isoMDS from MASS, and
method = 'sammon' will use sammon from MASS

• node_rank_leafsort(): Minimize hamiltonian path length by reordering leafs in a hierarchi-
cal clustering. Method refers to the clustering algorithm (either ’average’, ’single’, ’complete’,
or ’ward’)

• node_rank_visual(): Use Prim’s algorithm to find a minimum spanning tree giving the rank.
Uses the "VAT" method in seriation

• node_rank_spectral(): Minimize the 2-sum problem using a relaxation approach. Uses
the "Spectral" or "Spectral_norm" methods in seriation depending on the value of the norm
argument

• node_rank_spin_out(): Sorts points into neighborhoods by pushing large distances away
from the diagonal. Uses the "SPIN_STS" method in seriation

• node_rank_spin_in(): Sorts points into neighborhoods by concentrating low distances around
the diagonal. Uses the "SPIN_NH" method in seriation

• node_rank_quadratic(): Use quadratic assignment problem formulations to minimize cri-
terions using simulated annealing. Uses the "QAP_LS", "QAP_2SUM", "QAP_BAR", or
"QAP_Inertia" methods from seriation dependant on the criterion argument

46 node_topology

• node_rank_genetic(): Optimizes different criteria based on a genetic algorithm. Uses the
"GA" method from seriation. See register_GA for an overview of relevant arguments

• node_rank_dendser(): Optimizes different criteria based on heuristic dendrogram seriation.
Uses the "DendSer" method from seriation. See register_DendSer for an overview of
relevant arguments

Examples

graph <- create_notable('zachary') %>%
mutate(rank = node_rank_hclust())

node_topology Node properties related to the graph topology

Description

These functions calculate properties that are dependent on the overall topology of the graph.

Usage

node_dominator(root, mode = "out")

node_topo_order(mode = "out")

Arguments

root The node to start the dominator search from

mode How should edges be followed. Either 'in' or 'out'

Value

A vector of the same length as the number of nodes in the graph

Functions

• node_dominator(): Get the immediate dominator of each node. Wraps igraph::dominator_tree().

• node_topo_order(): Get the topological order of nodes in a DAG. Wraps igraph::topo_sort().

Examples

Sort a graph based on its topological order
create_tree(10, 2) %>%

arrange(sample(graph_order())) %>%
mutate(old_ind = seq_len(graph_order())) %>%
arrange(node_topo_order())

node_types 47

node_types Querying node types

Description

These functions all lets the user query whether each node is of a certain type. All of the functions
returns a logical vector indicating whether the node is of the type in question. Do note that the types
are not mutually exclusive and that nodes can thus be of multiple types.

Usage

node_is_cut()

node_is_root()

node_is_leaf()

node_is_sink()

node_is_source()

node_is_isolated()

node_is_universal(mode = "out")

node_is_simplical(mode = "out")

node_is_center(mode = "out")

node_is_adjacent(to, mode = "all", include_to = TRUE)

node_is_keyplayer(k, p = 0, tol = 1e-04, maxsec = 120, roundsec = 30)

Arguments

mode The way edges should be followed in the case of directed graphs.

to The nodes to test for adjacency to

include_to Should the nodes in to be marked as adjacent as well

k The number of keyplayers to identify

p The probability to accept a lesser state

tol Optimisation tolerance, below which the optimisation will stop

maxsec The total computation budget for the optimization, in seconds

roundsec Number of seconds in between synchronizing workers’ answer

48 pair_measures

Value

A logical vector of the same length as the number of nodes in the graph.

Functions

• node_is_cut(): is the node a cut node (articaultion node)

• node_is_root(): is the node a root in a tree

• node_is_leaf(): is the node a leaf in a tree

• node_is_sink(): does the node only have incomming edges

• node_is_source(): does the node only have outgoing edges

• node_is_isolated(): is the node unconnected

• node_is_universal(): is the node connected to all other nodes in the graph

• node_is_simplical(): are all the neighbors of the node connected

• node_is_center(): does the node have the minimal eccentricity in the graph

• node_is_adjacent(): is a node adjacent to any of the nodes given in to

• node_is_keyplayer(): Is a node part of the keyplayers in the graph (influenceR)

Examples

Find the root and leafs in a tree
create_tree(40, 2) %>%

mutate(root = node_is_root(), leaf = node_is_leaf())

pair_measures Calculate node pair properties

Description

This set of functions can be used for calculations that involve node pairs. If the calculateable
measure is not symmetric the function will come in two flavours, differentiated with _to/_from
suffix. The *_to() functions will take the provided node indexes as the target node (recycling if
necessary). For the *_from() functions the provided nodes are taken as the source. As for the other
wrappers provided, they are intended for use inside the tidygraph framework and it is thus not
necessary to supply the graph being computed on as the context is known.

Usage

node_adhesion_to(nodes)

node_adhesion_from(nodes)

node_cohesion_to(nodes)

node_cohesion_from(nodes)

pair_measures 49

node_distance_to(nodes, mode = "out", weights = NULL, algorithm = "automatic")

node_distance_from(
nodes,
mode = "out",
weights = NULL,
algorithm = "automatic"

)

node_cocitation_with(nodes)

node_bibcoupling_with(nodes)

node_similarity_with(nodes, mode = "out", loops = FALSE, method = "jaccard")

node_max_flow_to(nodes, capacity = NULL)

node_max_flow_from(nodes, capacity = NULL)

Arguments

nodes The other part of the node pair (the first part is the node defined by the row).
Recycled if necessary.

mode How should edges be followed? If 'all' all edges are considered, if 'in' only
inbound edges are considered, and if 'out' only outbound edges are considered

weights The weights to use for calculation

algorithm The distance algorithms to use. By default it will try to select the fastest suit-
able algorithm. Possible values are "automatic", "unweighted", "dijkstra",
"bellman-ford", and "johnson"

loops Should loop edges be considered

method The similarity measure to calculate. Possible values are: "jaccard", "dice",
and "invlogweighted"

capacity The edge capacity to use

Value

A numeric vector of the same length as the number of nodes in the graph

Functions

• node_adhesion_to(): Calculate the adhesion to the specified node. Wraps igraph::edge_connectivity()

• node_adhesion_from(): Calculate the adhesion from the specified node. Wraps igraph::edge_connectivity()

• node_cohesion_to(): Calculate the cohesion to the specified node. Wraps igraph::vertex_connectivity()

• node_cohesion_from(): Calculate the cohesion from the specified node. Wraps igraph::vertex_connectivity()

• node_distance_to(): Calculate various distance metrics between node pairs. Wraps igraph::distances()

50 reroute

• node_distance_from(): Calculate various distance metrics between node pairs. Wraps
igraph::distances()

• node_cocitation_with(): Calculate node pair cocitation count. Wraps igraph::cocitation()

• node_bibcoupling_with(): Calculate node pair bibliographic coupling. Wraps igraph::bibcoupling()

• node_similarity_with(): Calculate various node pair similarity measures. Wraps igraph::similarity()

• node_max_flow_to(): Calculate the maximum flow to a node. Wraps igraph::max_flow()

• node_max_flow_from(): Calculate the maximum flow from a node. Wraps igraph::max_flow()

Examples

Calculate the distance to the center node
create_notable('meredith') %>%

mutate(dist_to_center = node_distance_to(node_is_center()))

reroute Change terminal nodes of edges

Description

The reroute verb lets you change the beginning and end node of edges by specifying the new indexes
of the start and/or end node(s). Optionally only a subset of the edges can be rerouted using the subset
argument, which should be an expression that are to be evaluated in the context of the edge data and
should return an index compliant vector (either logical or integer).

Usage

reroute(.data, from = NULL, to = NULL, subset = NULL)

Arguments

.data A tbl_graph or morphed_tbl_graph object. grouped_tbl_graph will be ungrouped
prior to rerouting

from, to The new indexes of the terminal nodes. If NULL nothing will be changed

subset An expression evaluating to an indexing vector in the context of the edge data.

Value

An object of the same class as .data

sampling_games 51

Examples

Switch direction of edges
create_notable('meredith') %>%

activate(edges) %>%
reroute(from = to, to = from)

Using subset
create_notable('meredith') %>%

activate(edges) %>%
reroute(from = 1, subset = to > 10)

sampling_games Graph games based on direct sampling

Description

This set of graph games creates graphs directly through sampling of different attributes, topologies,
etc. The nature of their algorithm is described in detail at the linked igraph documentation.

Usage

play_degree(out_degree, in_degree = NULL, method = "simple")

play_dotprod(position, directed = TRUE)

play_fitness(m, out_fit, in_fit = NULL, loops = FALSE, multiple = FALSE)

play_fitness_power(
n,
m,
out_exp,
in_exp = -1,
loops = FALSE,
multiple = FALSE,
correct = TRUE

)

play_erdos_renyi(n, p, m, directed = TRUE, loops = FALSE)

play_geometry(n, radius, torus = FALSE)

Arguments

out_degree, in_degree

The degrees of each node in the graph

method The algorithm to use for the generation. Either 'simple', 'vl', or 'simple.no.multiple'

position The latent position of each node by column.

52 sampling_games

directed Should the resulting graph be directed

m The number of edges in the graph

out_fit, in_fit

The fitness of each node

loops Are loop edges allowed

multiple Are multiple edges allowed

n The number of nodes in the graph.

out_exp, in_exp

Power law exponent of degree distribution

correct Use finite size correction

p The probabilty of an edge occuring

radius The radius within which vertices are connected

torus Should the vertices be distributed on a torus instead of a plane

Value

A tbl_graph object

Functions

• play_degree(): Create graphs based on the given node degrees. See igraph::sample_degseq()

• play_dotprod(): Create graphs with link probability given by the dot product of the latent
position of termintating nodes. See igraph::sample_dot_product()

• play_fitness(): Create graphs where edge probabilities are proportional to terminal node
fitness scores. See igraph::sample_fitness()

• play_fitness_power(): Create graphs with an expected power-law degree distribution. See
igraph::sample_fitness_pl()

• play_erdos_renyi(): Create graphs with a fixed edge probability or count. See igraph::sample_gnp()
and igraph::sample_gnm()

• play_geometry(): Create graphs by positioning nodes on a plane or torus and connecting
nearby ones. See igraph::sample_grg()

See Also

Other graph games: component_games, evolution_games, type_games

Examples

plot(play_erdos_renyi(20, 0.3))

search_graph 53

search_graph Search a graph with depth first and breath first

Description

These functions wraps the igraph::bfs() and igraph::dfs() functions to provide a consistent
return value that can be used in dplyr::mutate() calls. Each function returns an integer vector
with values matching the order of the nodes in the graph.

Usage

bfs_rank(root, mode = "out", unreachable = FALSE)

bfs_parent(root, mode = "out", unreachable = FALSE)

bfs_before(root, mode = "out", unreachable = FALSE)

bfs_after(root, mode = "out", unreachable = FALSE)

bfs_dist(root, mode = "out", unreachable = FALSE)

dfs_rank(root, mode = "out", unreachable = FALSE)

dfs_rank_out(root, mode = "out", unreachable = FALSE)

dfs_parent(root, mode = "out", unreachable = FALSE)

dfs_dist(root, mode = "out", unreachable = FALSE)

Arguments

root The node to start the search from

mode How edges are followed in the search if the graph is directed. "out" only fol-
lows outbound edges, "in" only follows inbound edges, and "all" or "total"
follows all edges. This is ignored for undirected graphs.

unreachable Should the search jump to a new component if the search is terminated without
all nodes being visited? Default to FALSE (only reach connected nodes).

Value

An integer vector, the nature of which is determined by the function.

Functions

• bfs_rank(): Get the succession in which the nodes are visited in a breath first search

• bfs_parent(): Get the nodes from which each node is visited in a breath first search

54 type_games

• bfs_before(): Get the node that was visited before each node in a breath first search

• bfs_after(): Get the node that was visited after each node in a breath first search

• bfs_dist(): Get the number of nodes between the root and each node in a breath first search

• dfs_rank(): Get the succession in which the nodes are visited in a depth first search

• dfs_rank_out(): Get the succession in which each nodes subtree is completed in a depth
first search

• dfs_parent(): Get the nodes from which each node is visited in a depth first search

• dfs_dist(): Get the number of nodes between the root and each node in a depth first search

Examples

Get the depth of each node in a tree
create_tree(10, 2) %>%

activate(nodes) %>%
mutate(depth = bfs_dist(root = 1))

Reorder nodes based on a depth first search from node 3
create_notable('franklin') %>%

activate(nodes) %>%
mutate(order = dfs_rank(root = 3)) %>%
arrange(order)

type_games Graph games based on different node types

Description

This set of games are build around different types of nodes and simulating their interaction. The
nature of their algorithm is described in detail at the linked igraph documentation.

Usage

play_preference(
n,
n_types,
p_type = rep(1, n_types),
p_pref = matrix(1, n_types, n_types),
fixed = FALSE,
directed = TRUE,
loops = FALSE

)

play_preference_asym(
n,
n_types,

type_games 55

p_type = matrix(1, n_types, n_types),
p_pref = matrix(1, n_types, n_types),
loops = FALSE

)

play_bipartite(n1, n2, p, m, directed = TRUE, mode = "out")

play_traits(
n,
n_types,
growth = 1,
p_type = rep(1, n_types),
p_pref = matrix(1, n_types, n_types),
callaway = TRUE,
directed = TRUE

)

play_citation_type(
n,
growth,
types = rep(0, n),
p_pref = rep(1, length(unique(types))),
directed = TRUE

)

Arguments

n, n1, n2 The number of nodes in the graph. For bipartite graphs n1 and n2 specifies the
number of nodes of each type.

n_types The number of different node types in the graph

p_type The probability that a node will be the given type. Either a vector or a matrix,
depending on the game

p_pref The probability that an edge will be made to a type. Either a vector or a matrix,
depending on the game

fixed Should n_types be understood as a fixed number of nodes for each type rather
than as a probability

directed Should the resulting graph be directed

loops Are loop edges allowed

p The probabilty of an edge occuring

m The number of edges in the graph

mode The flow direction of edges

growth The number of edges added at each iteration

callaway Use the callaway version of the trait based game

types The type of each node in the graph, enumerated from 0

56 with_graph

Value

A tbl_graph object

Functions

• play_preference(): Create graphs by linking nodes of different types based on a defined
probability. See igraph::sample_pref()

• play_preference_asym(): Create graphs by linking nodes of different types based on an
asymmetric probability. See igraph::sample_asym_pref()

• play_bipartite(): Create bipartite graphs of fixed size and edge count or probability. See
igraph::sample_bipartite()

• play_traits(): Create graphs by evolving a graph with type based edge probabilities. See
igraph::sample_traits() and igraph::sample_traits_callaway()

• play_citation_type(): Create citation graphs by evolving with type based linking proba-
bility. See igraph::sample_cit_types() and igraph::sample_cit_cit_types()

See Also

Other graph games: component_games, evolution_games, sampling_games

Examples

plot(play_bipartite(20, 30, 0.4))

with_graph Evaluate a tidygraph algorithm in the context of a graph

Description

All tidygraph algorithms are meant to be called inside tidygraph verbs such as mutate(), where the
graph that is currently being worked on is known and thus not needed as an argument to the function.
In the off chance that you want to use an algorithm outside of the tidygraph framework you can use
with_graph() to set the graph context temporarily while the algorithm is being evaluated.

Usage

with_graph(graph, expr)

Arguments

graph The tbl_graph to use as context

expr The expression to evaluate

Value

The value of expr

with_graph 57

Examples

gr <- play_erdos_renyi(10, 0.3)

with_graph(gr, centrality_degree())

Index

∗ graph games
component_games, 12
evolution_games, 17
sampling_games, 51
type_games, 54

∗ node map functions
map_bfs, 28
map_bfs_back, 29
map_dfs, 31
map_dfs_back, 32

.E (context_accessors), 13

.G (context_accessors), 13

.N (context_accessors), 13
%E>% (activate), 2
%N>% (activate), 2

activate, 2
activate(), 4
active (activate), 2
as_tbl_graph (as_tbl_graph.data.frame),

3
as_tbl_graph(), 19
as_tbl_graph.data.frame, 3
as_tibble(), 4

bfs_after (search_graph), 53
bfs_before (search_graph), 53
bfs_dist (search_graph), 53
bfs_parent (search_graph), 53
bfs_rank (search_graph), 53
bind_edges (bind_graphs), 6
bind_graphs, 6
bind_nodes (bind_graphs), 6

centrality, 7, 40
centrality_alpha (centrality), 7
centrality_authority (centrality), 7
centrality_betweenness (centrality), 7
centrality_betweenness_communicability

(centrality), 7

centrality_betweenness_current
(centrality), 7

centrality_betweenness_network
(centrality), 7

centrality_betweenness_rsp_net
(centrality), 7

centrality_betweenness_rsp_simple
(centrality), 7

centrality_closeness (centrality), 7
centrality_closeness_generalised

(centrality), 7
centrality_closeness_harmonic

(centrality), 7
centrality_closeness_residual

(centrality), 7
centrality_communicability

(centrality), 7
centrality_communicability_even

(centrality), 7
centrality_communicability_odd

(centrality), 7
centrality_decay (centrality), 7
centrality_degree (centrality), 7
centrality_edge_betweenness

(centrality), 7
centrality_eigen (centrality), 7
centrality_expected (centrality), 7
centrality_hub (centrality), 7
centrality_information (centrality), 7
centrality_integration (centrality), 7
centrality_katz (centrality), 7
centrality_manual (centrality), 7
centrality_pagerank (centrality), 7
centrality_power (centrality), 7
centrality_random_walk (centrality), 7
centrality_subgraph (centrality), 7
centrality_subgraph_even (centrality), 7
centrality_subgraph_odd (centrality), 7
component_games, 12, 19, 52, 56

58

INDEX 59

context_accessors, 13
convert (morph), 35
create_bipartite (create_graphs), 14
create_chordal_ring (create_graphs), 14
create_citation (create_graphs), 14
create_complete (create_graphs), 14
create_de_bruijn (create_graphs), 14
create_empty (create_graphs), 14
create_graphs, 14
create_kautz (create_graphs), 14
create_lattice (create_graphs), 14
create_notable (create_graphs), 14
create_path (create_graphs), 14
create_ring (create_graphs), 14
create_star (create_graphs), 14
create_tree (create_graphs), 14
crystallise (morph), 35
crystallize (morph), 35

dfs_dist (search_graph), 53
dfs_parent (search_graph), 53
dfs_rank (search_graph), 53
dfs_rank_out (search_graph), 53
dplyr::bind_rows(), 6, 19
dplyr::mutate(), 7, 53

edge_is_between (edge_types), 16
edge_is_from (edge_types), 16
edge_is_incident (edge_types), 16
edge_is_loop (edge_types), 16
edge_is_multiple (edge_types), 16
edge_is_mutual (edge_types), 16
edge_is_to (edge_types), 16
edge_types, 16
evolution_games, 13, 17, 52, 56

filter(), 38

graph_adhesion (graph_measures), 20
graph_assortativity (graph_measures), 20
graph_asym_count (graph_measures), 20
graph_automorphisms (graph_measures), 20
graph_clique_count (graph_measures), 20
graph_clique_num (graph_measures), 20
graph_component_count (graph_measures),

20
graph_diameter (graph_measures), 20
graph_girth (graph_measures), 20
graph_is_bipartite (graph_types), 23

graph_is_chordal (graph_types), 23
graph_is_complete (graph_types), 23
graph_is_connected (graph_types), 23
graph_is_dag (graph_types), 23
graph_is_directed (graph_types), 23
graph_is_forest (graph_types), 23
graph_is_isomorphic_to (graph_types), 23
graph_is_simple (graph_types), 23
graph_is_subgraph_isomorphic_to

(graph_types), 23
graph_is_tree (graph_types), 23
graph_join, 19
graph_join(), 6
graph_mean_dist (graph_measures), 20
graph_measures, 20
graph_min_cut (graph_measures), 20
graph_modularity (graph_measures), 20
graph_motif_count (graph_measures), 20
graph_mutual_count (graph_measures), 20
graph_order (graph_measures), 20
graph_radius (graph_measures), 20
graph_reciprocity (graph_measures), 20
graph_size (graph_measures), 20
graph_types, 23
graph_unconn_count (graph_measures), 20
group_biconnected_component

(group_graph), 24
group_by(), 4, 38
group_components (group_graph), 24
group_edge_betweenness (group_graph), 24
group_fast_greedy (group_graph), 24
group_graph, 24
group_infomap (group_graph), 24
group_label_prop (group_graph), 24
group_leading_eigen (group_graph), 24
group_louvain (group_graph), 24
group_optimal (group_graph), 24
group_spinglass (group_graph), 24
group_walktrap (group_graph), 24

igraph::alpha_centrality(), 10
igraph::as.igraph(), 5, 6
igraph::assortativity(), 22
igraph::authority_score(), 10
igraph::automorphisms(), 22
igraph::betweenness(), 10
igraph::bfs(), 53
igraph::bibcoupling(), 50
igraph::biconnected_components(), 26

60 INDEX

igraph::clique_num(), 22
igraph::closeness(), 10
igraph::cluster_edge_betweenness(), 26,

38
igraph::cluster_fast_greedy(), 26
igraph::cluster_infomap(), 26
igraph::cluster_label_prop(), 26
igraph::cluster_leading_eigen(), 26, 38
igraph::cluster_louvain(), 26
igraph::cluster_optimal(), 26
igraph::cluster_spinglass(), 25, 26
igraph::cluster_walktrap(), 26, 38
igraph::cocitation(), 50
igraph::components(), 26
igraph::constraint(), 40
igraph::coreness(), 40
igraph::count_components(), 22
igraph::count_max_cliques(), 22
igraph::count_motifs(), 22
igraph::count_triangles(), 27
igraph::degree(), 11
igraph::dfs(), 53
igraph::diameter(), 22
igraph::distances(), 49, 50
igraph::diversity(), 40
igraph::dominator_tree(), 46
igraph::dyad_census(), 22
igraph::edge_betweenness(), 11
igraph::edge_connectivity(), 22, 49
igraph::ego(), 27
igraph::ego_size(), 27
igraph::eigen_centrality(), 10
igraph::estimate_betweenness(), 10
igraph::estimate_closeness(), 10
igraph::girth(), 22
igraph::gorder(), 22
igraph::gsize(), 22
igraph::hub_score(), 11
igraph::is_isomorphic_to(), 24
igraph::is_subgraph_isomorphic_to(),

24
igraph::knn(), 27
igraph::local_scan(), 34
igraph::make_chordal_ring(), 15
igraph::make_graph(), 15
igraph::max_flow(), 50
igraph::mean_distance(), 23
igraph::min_cut(), 23

igraph::page_rank(), 11
igraph::power_centrality(), 10
igraph::radius(), 22
igraph::reciprocity(), 23
igraph::sample_asym_pref(), 56
igraph::sample_bipartite(), 56
igraph::sample_cit_cit_types(), 56
igraph::sample_cit_types(), 56
igraph::sample_degseq(), 52
igraph::sample_dot_product(), 52
igraph::sample_fitness(), 52
igraph::sample_fitness_pl(), 52
igraph::sample_forestfire(), 19
igraph::sample_gnm(), 52
igraph::sample_gnp(), 52
igraph::sample_grg(), 52
igraph::sample_growing(), 19
igraph::sample_hierarchical_sbm(), 13
igraph::sample_islands(), 13
igraph::sample_last_cit(), 19
igraph::sample_pa(), 19
igraph::sample_pa_age(), 19
igraph::sample_pref(), 56
igraph::sample_sbm(), 13
igraph::sample_smallworld(), 13
igraph::sample_traits(), 56
igraph::sample_traits_callaway(), 56
igraph::similarity(), 50
igraph::strength(), 11
igraph::subgraph_centrality(), 11
igraph::topo_sort(), 46
igraph::transitivity(), 27
igraph::vertex_connectivity(), 49
is.tbl_graph (as_tbl_graph.data.frame),

3

local_ave_degree (local_graph), 26
local_graph, 26
local_members (local_graph), 26
local_size (local_graph), 26
local_transitivity (local_graph), 26
local_triangles (local_graph), 26

map_bfs, 28, 30, 32, 34
map_bfs(), 29, 34
map_bfs_back, 29, 29, 32, 34
map_bfs_back(), 28
map_bfs_back_chr (map_bfs_back), 29
map_bfs_back_dbl (map_bfs_back), 29

INDEX 61

map_bfs_back_int (map_bfs_back), 29
map_bfs_back_lgl (map_bfs_back), 29
map_bfs_chr (map_bfs), 28
map_bfs_dbl (map_bfs), 28
map_bfs_int (map_bfs), 28
map_bfs_lgl (map_bfs), 28
map_dfs, 29, 30, 31, 34
map_dfs(), 32, 34
map_dfs_back, 29, 30, 32, 32
map_dfs_back(), 31
map_dfs_back_chr (map_dfs_back), 32
map_dfs_back_dbl (map_dfs_back), 32
map_dfs_back_int (map_dfs_back), 32
map_dfs_back_lgl (map_dfs_back), 32
map_dfs_chr (map_dfs), 31
map_dfs_dbl (map_dfs), 31
map_dfs_int (map_dfs), 31
map_dfs_lgl (map_dfs), 31
map_local, 34
map_local_chr (map_local), 34
map_local_dbl (map_local), 34
map_local_int (map_local), 34
map_local_lgl (map_local), 34
morph, 35
morph(), 37
morphers, 35, 36, 37

node_adhesion_from (pair_measures), 48
node_adhesion_to (pair_measures), 48
node_bibcoupling_with (pair_measures),

48
node_bridging_score (node_measures), 40
node_closeness_impact (node_measures),

40
node_cocitation_with (pair_measures), 48
node_cohesion_from (pair_measures), 48
node_cohesion_to (pair_measures), 48
node_connectivity_impact

(node_measures), 40
node_constraint (node_measures), 40
node_coreness (node_measures), 40
node_distance_from (pair_measures), 48
node_distance_to (pair_measures), 48
node_diversity (node_measures), 40
node_dominator (node_topology), 46
node_eccentricity (node_measures), 40
node_effective_network_size

(node_measures), 40
node_fareness_impact (node_measures), 40

node_is_adjacent (node_types), 47
node_is_center (node_types), 47
node_is_cut (node_types), 47
node_is_isolated (node_types), 47
node_is_keyplayer (node_types), 47
node_is_leaf (node_types), 47
node_is_root (node_types), 47
node_is_simplical (node_types), 47
node_is_sink (node_types), 47
node_is_source (node_types), 47
node_is_universal (node_types), 47
node_max_flow_from (pair_measures), 48
node_max_flow_to (pair_measures), 48
node_measures, 40
node_rank, 41
node_rank_anneal (node_rank), 41
node_rank_branch_bound (node_rank), 41
node_rank_dendser (node_rank), 41
node_rank_genetic (node_rank), 41
node_rank_hclust (node_rank), 41
node_rank_leafsort (node_rank), 41
node_rank_mds (node_rank), 41
node_rank_quadratic (node_rank), 41
node_rank_spectral (node_rank), 41
node_rank_spin_in (node_rank), 41
node_rank_spin_out (node_rank), 41
node_rank_traveller (node_rank), 41
node_rank_two (node_rank), 41
node_rank_visual (node_rank), 41
node_similarity_with (pair_measures), 48
node_topo_order (node_topology), 46
node_topology, 46
node_types, 47

pair_measures, 48
play_barabasi_albert (evolution_games),

17
play_barabasi_albert_aging

(evolution_games), 17
play_bipartite (type_games), 54
play_blocks (component_games), 12
play_blocks_hierarchy

(component_games), 12
play_citation_age (evolution_games), 17
play_citation_type (type_games), 54
play_citation_type(), 19
play_degree (sampling_games), 51
play_dotprod (sampling_games), 51
play_erdos_renyi (sampling_games), 51

62 INDEX

play_fitness (sampling_games), 51
play_fitness_power (sampling_games), 51
play_forestfire (evolution_games), 17
play_geometry (sampling_games), 51
play_growing (evolution_games), 17
play_islands (component_games), 12
play_preference (type_games), 54
play_preference_asym (type_games), 54
play_smallworld (component_games), 12
play_traits (type_games), 54
play_traits(), 19

reroute, 50

sampling_games, 13, 19, 51, 56
search_graph, 53
stats::hclust(), 45

tbl_graph, 2
tbl_graph (as_tbl_graph.data.frame), 3
to_bfs_tree (morphers), 37
to_complement (morphers), 37
to_components (morphers), 37
to_contracted (morphers), 37
to_dfs_tree (morphers), 37
to_directed (morphers), 37
to_dominator_tree (morphers), 37
to_hierarchical_clusters (morphers), 37
to_linegraph, 36
to_linegraph (morphers), 37
to_local_neighborhood (morphers), 37
to_minimum_spanning_tree (morphers), 37
to_shortest_path (morphers), 37
to_simple (morphers), 37
to_split (morphers), 37
to_subcomponent (morphers), 37
to_subgraph (morphers), 37
to_undirected (morphers), 37
to_unfolded_tree (morphers), 37
type_games, 13, 19, 52, 54

unmorph (morph), 35

with_graph, 56

	activate
	as_tbl_graph.data.frame
	bind_graphs
	centrality
	component_games
	context_accessors
	create_graphs
	edge_types
	evolution_games
	graph_join
	graph_measures
	graph_types
	group_graph
	local_graph
	map_bfs
	map_bfs_back
	map_dfs
	map_dfs_back
	map_local
	morph
	morphers
	node_measures
	node_rank
	node_topology
	node_types
	pair_measures
	reroute
	sampling_games
	search_graph
	type_games
	with_graph
	Index

