Package ‘superb’

May 11, 2022

Type Package

Title Summary Plots with Adjusted Error Bars
Version 0.95.0

Date 2022-05-10

Author Denis Cousineau [aut, cre],
Bradley Harding [ctb],
Marc-Andre Goulet [ctb],
Jesika Walker [art, pre]

Maintainer Denis Cousineau <denis.cousineau@uottawa.ca>
BugReports https://github.com/dcousin3/superb/issues/

URL https://dcousin3.github.io/superb/

Description Computes standard error and confidence interval of various descriptive statistics under
various designs and sampling schemes. The main function, superbPlot(), can either return a plot
or a dataframe with the statistic and its precision interval so that other plotting package
can be used. See Cousineau and colleagues (2021) <doi:10.1177/25152459211035109>
or Cousineau (2017) <doi:10.5709/acp-0214-z> for a review as well as Cousineau (2005)
<doi:10.20982/tqmp.01.1.p042>, Morey (2008) <doi:10.20982/tqmp.04.2.p061>, Baguley (2012)
<doi:10.3758/s13428-011-0123-
7>, Cousineau & Laurencelle (2016) <doi:10.1037/met0000055>,

Cousineau & O'Brien (2014) <doi:10.3758/s13428-013-0441-z>, Calderini & Harding
<doi:10.20982/tqmp.15.1.p001> for specific references.

License GPL-3
Encoding UTF-8
VignetteBuilder knitr
LazyData true
RoxygenNote 7.1.1
Depends R (>=3.5.0)

Imports foreign, plyr (>= 1.8.4), ggplot2 (>= 3.1.0), MASS, Isr (>=
0.5), methods, Rdpack (>= 0.7), stats, shiny, shinyBS, stringr,
utils

https://github.com/dcousin3/superb/issues/
https://dcousin3.github.io/superb/
https://doi.org/10.1177/25152459211035109
https://doi.org/10.5709/acp-0214-z
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.04.2.p061
https://doi.org/10.3758/s13428-011-0123-7
https://doi.org/10.3758/s13428-011-0123-7
https://doi.org/10.1037/met0000055
https://doi.org/10.3758/s13428-013-0441-z
https://doi.org/10.20982/tqmp.15.1.p001

2 R topics documented:

Suggests dplyr, psych, emojifont, fMultivar, grid, gridExtra, knitr,
lattice, lawstat, boot, png, reshape2, rmarkdown, sadists,
scales, testthat, tibble

RdMacros Rdpack

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-11 12:10:03 UTC

R topics documented:

biasCorrectionTransform 3
bootstrapPrecisionMeasuresol e e 3
CousineauLaurencelleLambda0 ... 5
dataFigurel e 6
dataFigure2 7
dataFigure3 e e 8
dataFigured L 9
geom_superberrorbar L. 10
GRD . . . 13
HyunhFeldtEpsilon 15
makeTransparent L 16
MauchlySphericityTest e 17
measuresWithMissingData o L o 18
poolSDTransform L 19
PrecisionMeasures a e e e e e e e e e e e e e e e 19
precisionMeasureWithCustomDF 0. 21
runDebug 22
showSignificance e e 23
ShroutFleissICCL e 25
slope e 26
subjectCenteringTransform 27
sSumMmaryStatistiCs oL e e e e e e e e e 28
superbData L. e 29
superbPlot L 31
superbPlot.bar e 34
superbPlot.halfwidthline 35
superbPlot.line L 37
superbPlot.lineBand 38
superbPlot.point oL e 40
superbPlot.pointindividualline oo 41
superbPlot.pointjitter e e 43
superbPlot.pointjitterviolin L. oL 44
superbPlot.raincloud 46
superbShiny L e e 48
TMBI96Ar 49

twoStepTransform 51

biasCorrectionTransform 3

WelchDegreeOfFreedom e 52
WinerCompoundSymmetryTest 53
Index 55

biasCorrectionTransform
bias-correction transform

Description
biasCorrectionTransform is a transformation that can be applied to a matrix of data. The resulting
matrix’s variance is corrected for bias (Morey 2008)

Usage

biasCorrectionTransform(dta, variables)

Arguments
dta a data.frame containing the data in wide format;
variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged
Value

a data.frame of the same form as dta with the variables transformed.

References

Morey RD (2008). “Confidence Intervals from Normalized Data: A correction to Cousineau
(2005).” Tutorials in Quantitative Methods for Psychology, 4, 61 — 64. doi: 10.20982/tqmp.04.2.p061.

bootstrapPrecisionMeasures
Bootstrapped measures of precision

Description

superb also comes with a few built-in measures of precisions that uses bootstrap. More can be
added based on users needs. All bootstrapSE.fct() functions produces an interval width; all
bootstrapPI.fct() produces the lower and upper limits of an interval. These estimates are based
on 5,000 sub-samples by default. Change this default withoptions(”superb.bootstrapIter”
=number). See (Efron and Tibshirani 1994) for a comprehensive introduction. The bootstrap
estimates are called PI which stands for Precision intervals. This is to denote that they estimate
the sampling distribution, not the predictive distribution on which all confidence intervals are based
(rpw19; Poitevineau and Lecoutre 2010; Lecoutre 1999).

https://doi.org/10.20982/tqmp.04.2.p061

Usage
bootstrapSE

bootstrapPI

bootstrapSE.

bootstrapPI

bootstrapSE.
bootstrapPI.

bootstrapSE.

bootstrapPI

bootstrapSE.

bootstrapPI

bootstrapSE.

bootstrapPI.

Arguments

X

gamma

Value

.mean(x)

.mean(x, gamma)

median(x)

.median(x, gamma)

hmean(x)
hmean(x, gamma)

gmean(x)

.gmean(x, gamma)

var(x)

.var(x, gamma)

sd(x)

sd(x, gamma)

a vector of numbers, the sample data (mandatory);
a confidence level for PI (default 0.95).

a measure of precision (SE) or an interval of precision (PI).

References

bootstrapPrecisionMeasures

Efron B, Tibshirani RJ (1994). An introduction to the bootstrap. CRC press.

Lecoutre B (1999). “Two useful distributions for Bayesian predictive procedures under normal

models.” Journal of Statistical Planning and Inference, 79,93 — 105. doi: 10.1016/S03783758(98)00231-

6, https://doi.org/10.1016/50378-3758(98)00231-6.

Poitevineau J, Lecoutre B (2010). “Implementing Bayesian predictive procedures: The K-prime and
K-square distributions.” Computational Statistics and Data Analysis, 54, 724 — 731. doi: 10.1016/
j-csda.2008.11.004.

Examples

the confidence interval of the mean for default 95% and 90% confidence level

https://doi.org/10.1016/S0378-3758(98)00231-6
https://doi.org/10.1016/S0378-3758(98)00231-6
https://doi.org/10.1016/S0378-3758(98)00231-6
https://doi.org/10.1016/j.csda.2008.11.004
https://doi.org/10.1016/j.csda.2008.11.004

CousineauLaurencelleLambda 5

bootstrapPI.mean(c(1,2,3))
bootstrapPI.mean(c(1,2,3), gamma = 0.90)

Standard errors for standard deviation or variance
bootstrapSE.sd(c(1,2,3))
bootstrapSE.var(c(1,2,3))

CousineaulLaurencellelLambda
Cousineau-Laurencelle’s lambda correction for cluster-randomized
sampling

Description

The functions CousineaulaurencelleLambda() returns the correction factor for cluster-randomized
sampling. This correction is then used in a variety of ways, for example, to get the effective number
of participants (in a power study) or to correct a t-test. See (Cousineau and Laurencelle 2016).

Usage

CousineaulLaurencellelambda(paramvector)

Arguments
paramvector A vector with, in that order, the intra-class correlation r, the number of clusters,
then the number of participants in all the clusters.
Value

lambda the correction factor for cluster-randomized sampling.

References

Cousineau D, Laurencelle L (2016). “A Correction Factor for the Impact of Cluster Randomized
Sampling and Its Applications.” Psychological Methods, 21, 121 — 135. doi: 10.1037/met0000055.

Examples

Example from Cousineau & Laurencelle, 2017, p. 124:
CousineaulLaurencellelLambda(c(0.2, 5, 20, 20, 20, 20, 20))
2.234188

https://doi.org/10.1037/met0000055

6 dataFigurel

dataFigurel Data for Figure 1

Description

The data, taken from (Cousineau 2017), is an example where the "stand-alone" 95\% confidence in-
terval of the means returns a result in contradiction with the result of a statistical test. The paradox-
ical result is resolved by using adjusted confidence intervals, here the different-adjusted confidence
interval.

Usage

data(dataFigurel)

Format

An object of class data.frame.

Source

doi: 10.5709/acp0214z

References

Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13,
140 — 155. doi: 10.5709/acp0214z.

Examples

library(ggplot2)
library(gridExtra)
data(dataFigurel)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
pltla <- superbPlot(dataFigurel, BSFactors = "grp”,
adjustments=list(purpose = "single"),
variables = c("score"), plotStyle="bar") +
xlab("Group”) + ylab("Score”) + labs(title="95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black”, size = 0.5, linetype=2)
plt1b <- superbPlot(dataFigurel, BSFactors = "grp”,
adjustments=list(purpose = "difference"),
variables = c("score"), plotStyle="bar") +
xlab("Group”) + ylab("”Score”) + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black”, size = 0.5, linetype=2)
pltl <- grid.arrange(pltia,pltib,ncol=2)

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.5709/acp-0214-z

dataFigure2 7

realise the correct t-test to see the discrepancy

t.test(dataFigurel$score[dataFigurel$grp==11,
dataFigurel$score[dataFigurel$grp==2],
var.equal=TRUE)

dataFigure2 Data for Figure 2

Description

The data, taken from (Cousineau 2017)7, is an example where the "stand-alone" 95\% confidence
interval of the means returns a result in contradiction with the result of a statistical test. The para-
doxical result is resolved by using adjusted confidence intervals, here the correlation- and different-
adjusted confidence interval.

Usage
data(dataFigure?2)

Format

An object of class data.frame.

Source

doi: 10.5709/acp0214z

References

Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13,
140 — 155. doi: 10.5709/acp0214z.

Examples

library(ggplot2)
library(gridextra)
data(dataFigure?2)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt2a <- superbPlot(dataFigure2, WSFactors = "Moment(2)",
adjustments=list(purpose = "difference"),
variables = c("pre”,"post”), plotStyle="bar"”) +
xlab("Group”) + ylab("”Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black"”, size = 0.5, linetype=2)

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.5709/acp-0214-z

8 dataFigure3

plt2b <- superbPlot(dataFigure2, WSFactors = "Moment(2)",
adjustments=list(purpose = "difference”, decorrelation = "CA"),
variables = c("pre”,"post”), plotStyle="bar"”) +
xlab("Group”) + ylab("Score”) + labs(title="Correlation and difference-adjusted\n95% CI") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black"”, size = 0.5, linetype=2)
plt2 <- grid.arrange(plt2a,plt2b,ncol=2)

realise the correct t-test to see the discrepancy
t.test(dataFigure2$pre, dataFigure2$post, paired=TRUE)

dataFigure3 Data for Figure 3

Description

The data, inspired from (Cousineau and Laurencelle 2016), is an example where the "stand-alone"
95\ a result in contradiction with the result of a statistical test. The paradoxical result is resolved by
using adjusted confidence intervals, here the cluster- and different-adjusted confidence interval.

Usage

data(dataFigure3)

Format

An object of class data.frame.

Source

doi: 10.5709/acp0214z

References

Cousineau D, Laurencelle L (2016). “A Correction Factor for the Impact of Cluster Randomized
Sampling and Its Applications.” Psychological Methods, 21, 121 — 135. doi: 10.1037/met0000055.

Examples

library(ggplot2)
library(gridExtra)
data(dataFigure3)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages
realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals

plt3a <- superbPlot(dataFigure3, BSFactors = "grp”,
adjustments=list(purpose = "difference”, samplingDesign = "SRS"),

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.1037/met0000055

dataFigure4 9

variables = c("VD"), plotStyle="bar") +
xlab("Group”) + ylab("”Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black”, size = 0.5, linetype=2)
plt3b <- superbPlot(dataFigure3, BSFactors = "grp”,
adjustments=list(purpose = "difference”, samplingDesign = "CRS"),
variables = c("VD"), plotStyle="bar", clusterColumn = "cluster”) +
xlab("Group”) + ylab("Score"”) + labs(title="Cluster and difference-adjusted\n95% CI") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black”, size = 0.5, linetype=2)
plt3 <- grid.arrange(plt3a,plt3b,ncol=2)

realise the correct t-test to see the discrepancy

res <- t.test(dataFigure3$VD[dataFigure3$grp==11],
dataFigure3$VD[dataFigure3$grp==2],
var.equal=TRUE)

micc <- mean(c(0.491334683772226, 0.20385744842838)) # mean ICC given by superbPlot

lam <- CousineaulLaurencelleLambda(c(micc, 5,5,5,5,5,5))

tcorr <- res$statistic / lam

pcorr <- 1-pt(tcorr,4)

dataFigure4 Data for Figure 4

Description

The data, inspired from (Cousineau 2017), shows an example where the "stand-alone" 95\ a result in
contradiction with the result of a statistical test. The paradoxical result is resolved by using adjusted
confidence intervals, here the population size-adjusted confidence interval.

Usage

data(dataFigure4)

Format

An object of class data.frame.

Source

doi: 10.5709/acp0214z

References

Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13,
140 — 155. doi: 10.5709/acp0214z.

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.5709/acp-0214-z

10 geom_superberrorbar

Examples

library(ggplot2)
library(gridExtra)
data(dataFigure4)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt4a = superbPlot(dataFigure4, BSFactors = "group”,
adjustments=list(purpose = "single", popSize = Inf),
variables = c("score"), plotStyle="bar") +
xlab("Group”) + ylab("”Score”) + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black”, size = 0.5, linetype=2)
plt4b = superbPlot(dataFigure4, BSFactors = "group”,
adjustments=list(purpose = "single", popSize = 50),
variables = c("score"”), plotStyle="bar") +
xlab("Group™”) + ylab("Score”) + labs(title="Population size and difference-\nadjusted 95% CI") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black"”, size = 0.5, linetype=2)
plt4 = grid.arrange(plt4a,plt4b,ncol=2)

realise the correct t-test to see the discrepancy
res = t.test(dataFigure4$score, mu=100)

tcorr = res$statistic /sqrt(1-25/50)

pcorr = 1-pt(tcorr,24)

c(tcorr, pcorr)

geom_superberrorbar geom_superberrorbar for expanded error bar displays

Description

geom_superberrorbar() is a geom for ggplots; it is based on the original geom_errorbar (and is
totally compatible with it) but expands this geom in three different ways. First, it is possible to
decide whether the error bar tips are unidirectional, pointing to the "left" or to the "right" or if they
go in "both" directions. Second, it is possible to "double" or "triple" the horizontal marks at the
extremities of the error bar, with a "tipgap" of your liking. Third, a new characteristici is vcolour to
set a different colour for the vertical part of the error bar. The colour can also be "NA" to have it
invisible.

Usage

geom_superberrorbar(
mapping = NULL,
data = NULL,
stat = "identity"”,

geom_superberrorbar

11

position = "identity",
direction = "both”,
tipformat = "single",
tipgap = 0.1,

L

na.rm = FALSE,

orientation =

show. legend
inherit.aes

Arguments
mapping
data
stat
position
direction

tipformat

tipgap

na.rm
orientation
show. legend

inherit.aes

Value

NA,
NA,
TRUE

(as usual) see geom_errorbar
(as usual) see geom_errorbar
(as usual) see geom_errorbar
(as usual) see geom_errorbar
(NEW) "left", "right" or "both" (Default is "both")

(NEW) "single", "double" or "triple" to add additional marker lines to the tips
(default is "single")

(NEW) The spacing between the markers when "double" or "triple" is used (de-
fault 0.1)

all additional parameters are sent to the underlying geom_path
(as usual) see geom_errorbar
(as usual) see geom_errorbar
(as usual) see geom_errorbar

(as usual) see geom_errorbar

a layer containing error bars in a ggplot object

Examples

library(superb) # to import the geom_superberrorbar
library(ggplot2)

let's have a fake data frame
dta <- data.frame(grp = c(1,2,3), center=c(1,2,3), width = ¢(1,1,1.5))

an example with none of the new features = a regular error bar
ggplot(dta, aes_string(ymin="center-width”, ymax="center+width”, x = "grp")) +
geom_superberrorbar()

an example with left-pointing error bars

ggplot(dta, aes_string(ymin="center-width"”, ymax="center+width", x

"erp”)) +

geom_superberrorbar(direction="1eft", width = 0.1)

12

geom_superberrorbar

an example with doubled-tipped error bar and the default tipgap
ggplot(dta, aes_string(ymin="center-width”, ymax="center+width”, x = "grp”)) +
geom_superberrorbar(tipformat = "double”, width = 0.1)

an example with left-pointing tripled-tip error bars with small gaps
ggplot(dta, aes_string(ymin="center-width”, ymax="center+width”, x = "grp")) +
geom_superberrorbar(tipformat = "triple”, width= 0.1, tipgap = 0.04, direction = "left")

a final example with two-coloured, left-pointing tripled-tip error bars with small gaps
ggplot(dta, aes_string(ymin="center-width”, ymax="center+width", x = "grp")) +
geom_superberrorbar(tipformat = "triple”, width= 0.1, tipgap = 0.04, direction = "left",
colour = "black”, vcolour = "NA")

This new geom is integrated inside superbPlot() so that you can vary the
error bar shapes. Let's see examples:

using GRD to generate random data with a moderate effect
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages
test <- GRD(WSFactors = "Moment(5)",

Effects = list("Moment” = extent(10)),

Population = list(mean = 100, stddev = 25, rho = 0.8))

ornate = list(
labs(title =paste(”(left) 95% confidence intervals”,
"\n(right) 99% confidence intervals”,
"\n(center) 99.9% confidence intervals")),
xlab(”"Moment"), ylab("Score"),
coord_cartesian(ylim = c(85,110))

plt1 <- superbPlot(test,
WSFactors = "Moment(5)",
variables = c("DV.1","DV.2","DV.3","DV.4","DV.5"),
adjustments=list(purpose = "difference”, decorrelation = "CA"),
errorbarParams = list(direction = "left”,
width = 0.2, position = position_nudge(-0.05)),
gamma = 0.95,
plotStyle = "line”) + ornate
plt2 <- superbPlot(test,
WSFactors = "Moment(5)",
variables = c("DV.1","DV.2","DV.3","DV.4","DV.5"),
adjustments=list(purpose = "difference”, decorrelation = "CA"),
errorbarParams = list(direction = "right"”, tipgap = 0.5, tipformat = "double”
width = 0.2, position = position_nudge(+0.05)),
gamma =0.99,
plotStyle = "line”) + ornate
plt3 <- superbPlot(test,
WSFactors = "Moment(5)",
variables = c("DV.1","DV.2","DV.3","DV.4","DV.5"),
adjustments=list(purpose = "difference”, decorrelation = "CA"),
errorbarParams = list(direction = "both”, tipformat = "single",
width = 0.2, position = position_nudge(@)),

GRD

gamma = 0.999,
plotStyle "line") + ornate

transform the ggplots into "grob” so that they can be manipulated
plt1 <- ggplotGrob(plt1)

plt2 <- ggplotGrob(plt2 + makeTransparent())

plt3 <- ggplotGrob(plt3 + makeTransparent())

put the grobs onto an empty ggplot

ggplot() +
annotation_custom(grob=pltl) +
annotation_custom(grob=plt2) +
annotation_custom(grob=plt3)

13

GRD Generate random data

Description

The function GRD() generates a data frame containing random data suitable for analyses. The data
can be from within-subject or between-group designs. Within-subject designs are in wide format.

The function was originally presented in Calderini and Harding (2019).

Usage

GRD(

RenameDV = "DV",

SubjectsPerGroup = 100,

BSFactors = "",

WSFactors = "",

Effects = list(),

Population = list(mean = @, stddev = 1, rho = @, scores =
"rnorm(1, mean = GM, sd = STDDEV)"),

Contaminant = list(mean = @, stddev = 1, rho = @, scores =
"rnorm(1, mean = CGM, sd = CSTDDEV)", proportion = Q)

)
Arguments

RenameDV provide a name for the dependent variable (default DV)

SubjectsPerGroup
indicates the number of simulated scores per group (default 100 in each group)

BSFactors a string indicating the between-subject factor(s) with, between parenthesis, the
number of levels or the list of level names. Multiple factors are separated with a
colon ":" or enumerated in a vector of strings.

WSFactors a string indicating the within-subject factor(s) in the same format as the between-

subject factors

14 GRD

Effects a list detailing the effects to apply to the data

Population a list providing the population characteristics (default is a normal distribution
with a mean of 0 and standard deviation of 1)

Contaminant a list providing the contaminant characteristics and the proportion of contami-
nant (default 0)

Value

a data.frame with the simulated scores.

Note

Note that the range effect specification has been renamed extent to avoid masking the base func-
tion base: : range.

References

Calderini M, Harding B (2019). “GRD for R: An intuitive tool for generating random data in R.”
The Quantitative Methods for Psychology, 15(1), 1-11. doi: 10.20982/tqmp.15.1.p001.

Examples

Simplest example using all the default arguments:
dta <- GRD()

head(dta)

hist(dta$DV)

Renaming the dependant variable and setting the group size:
dta <- GRD(RenameDV = "score"”, SubjectsPerGroup = 1000)
hist(dta$score)

Examples for a between-subject design and for a within-subject design:
dta <- GRD(BSFactors = '3")
dta <- GRD(WSFactors = "Moment (2)")

A complex, 3 x 2 x (2) mixed design with a variable amount of participants in the 6 groups:
dta <- GRD(BSFactors = "difficulty(3) : gender (2)",
WSFactors="day(2)",
SubjectsPerGroup=c(20,24,12,13,28,29)
)

Defining population characteristics :
dta <- GRD(
RenameDV = "IQ",
Population=list(
mean=100, # will set GM to 100
stddev=15 # will set STDDEV to 15

)
hist(dta$1Q)

https://doi.org/10.20982/tqmp.15.1.p001

HyunhFeldtEpsilon 15

This example adds an effect along the "Difficulty” factor with a slope of 15
dta <- GRD(BSFactors="Difficulty(5)", SubjectsPerGroup = 100,
Population=list(mean=50,stddev=5),
Effects = list("Difficulty” = slope(15)))
show the mean performance as a function of difficulty:
superbPlot(dta, BSFactors = "Difficulty”, variables="DV")

An example in which the moments are correlated

dta <- GRD(BSFactors = "Difficulty(2)"”,WSFactors = "Moment (2)",
SubjectsPerGroup = 1000,
Effects = list("Difficulty” = slope(3), "Moment” = slope(1)),
Population=list(mean=50,stddev=20,rho=0.85)

)

the mean plot on the raw data...

superbPlot(dta, BSFactors = "Difficulty”, WSFactors = "Moment(2)",
variables=c("DV.1","DV.2"), plotStyle="line",
adjustments = list (purpose="difference"))

... and the mean plot on the decorrelated data;

because of high correlation, the error bars are markedly different

superbPlot(dta, BSFactors = "Difficulty”, WSFactors = "Moment(2)",
variables=c("DV.1","DV.2"), plotStyle="line",

adjustments = list (purpose="difference”, decorrelation = "CM"))
HyunhFeldtEpsilon Hyunh and Feldt’s epsilon measure of sphericity
Description

HyunhFeldtEpsilon() is a measure of sphericity created by Geisser and Greenhouse (1958). The
original measure was biased and therefore, Huynh and Feldt (1976) produced a revised version
(note that the 1976 paper contained typos that were uncorrected in SPSS; Lecoutre (1991))

Usage

HyunhFeldtEpsilon(dta, cols)

Arguments
dta a data.frame
cols a vector of column names indicating the relevant columns on which to compute
epsilon. Any other columns are ignored.
Value

returns the Hyunh-Feldt estimate of sphericity epsilon

16 makeTransparent

References

Geisser S, Greenhouse SW (1958). “An extension of Box’s results on the use of the F' distribution
in multivariate analysis.” Annals of Mathematical Statistics, 29(3), 885-891.

Huynh H, Feldt LS (1976). “Estimation of the Box correction for degrees of freedom from sample
data in randomized block and split-plot designs.” Journal of educational statistics, 1(1), 69—82.

Lecoutre B (1991). “A correction for the € approximate test in repeated measures designs with
two or more independent groups.” Journal of Educational Statistics, 16(4), 371-372.

makeTransparent makes ggplots with transparent elements

Description

makeTransparent is an extension to ggplots which makes all the elements of the plot transparent
except the data being displayed. This is useful to superimpose multiple plots, e.g. to generate plots
with multiple error bars for example.

Usage

makeTransparent ()

Value

does not return anything; set the elements to transparent.

Examples

make a basic plot

superbPlot(ToothGrowth, BSFactors = c("dose"”, "supp"),
variables = "len")

make a basic plot with transparent elements

superbPlot(ToothGrowth, BSFactors = c("dose"”, "supp"),
variables = "len") + makeTransparent()

MauchlySphericityTest 17

MauchlySphericityTest Mauchly’s test of Sphericity

Description

Performs a test of sphericity on a dataframe with multiple measures, one subject per line. It assesses
the significance of the null hypothesis that the covariance matrix is spherical. This test is described
in (Abdi 2010)

Usage

MauchlySphericityTest(dta, cols)

Arguments
dta A data frame containing within-subject measures, one participant per line;
cols A vector indicating the columns containing the measures.

Value

p the p-value of the null hypothesis that the data are spherical.

References

Abdi H (2010). “The greenhouse-geisser correction.” Encyclopedia of research design, 1(1), 544—
5438.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

coll <- ¢(3., 6., 2., 2., 5.),
col2 <- c(4., 5., 4., 4., 3.),
col3 <- c(2., 7., 7., 8., 6.),
col4 <- c(6., 8., 4., 6., 5.)
)
performs the test (here p = 0.5824)

MauchlySphericityTest(dta)

18 measures WithMissingData

measuresWithMissingData
Measures with missing data

Description

The following three functions can be used with missing data. They return the mean, the standard
error of the mean and the confidence interval of the mean. Note that we hesitated to provide these
functions: you should deal with missing data prior to making your plot.

Usage

meanNArm(x)
SE.meanNArm(x)

CI.meanNArm(x, gamma)

Arguments
X a vector of numbers, the sample data (mandatory);
gamma a confidence level for CI (default 0.95).

Value

the means, a measure of precision (SE) or an interval of precision (CI) in the presence of missing
data.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

the confidence interval of the mean for default 95% and 90% confidence level
meanNArm(c(1,2,3, NA))

SE.meanNArm(c(1,2,3, NA))

CI.meanNArm(c(1,2,3, NA))

CI.meanNArm(c(1,2,3, NA), gamma = 0.90)

poolSDTransform 19

poolSDTransform pooled standard deviation transform

Description

poolSDTransform is a transformations that can be applied to a matrix of data. The resulting matrix
has the column- standard deviations equal to the pool standard deviations of the individual columns,
the solution adopted by (Loftus and Masson 1994).

Usage

poolSDTransform(dta, variables)

Arguments
dta a data.frame containing the data in wide format;
variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged
Value

a data.frame of the same form as dta with the variables transformed.

References

Loftus GR, Masson MEJ (1994). “Using confidence intervals in within-subject designs.” Psycho-
nomic Bulletin & Review, 1, 476 —490. doi: 10.3758/BF03210951.

precisionMeasures Precision measures

Description

superb comes with a few built-in measures of precisions. All SE.fct() functions produces an
interval width; all CI.fct() produces the lower and upper limits of an interval. See (Harding et al.
2014; Harding et al. 2015) for more. "superbPlot-compatible" precision measures must have these
parameters:

https://doi.org/10.3758/BF03210951

20

Usage

SE.

CI

SE.

CI

SE.

CI.

SE.

CI

SE.

CI

SE.

CI.

SE.

CI

SE.

CI.

SE.

CI.

SE.

CI.

SE.

CI.

mean(x)

.mean(x, gamma)

median(x)

.median(x, gamma)

hmean (x)
hmean(x, gamma)

gmean(x)

.gmean(x, gamma)

var(x)

.var(x, gamma)

sd(x)
sd(x, gamma)

MAD (x)

.MAD(x, gamma)

IQR(x)

IQR(x, gamma)
fisherskew(x)
fisherskew(x, gamma)
pearsonskew(x)
pearsonskew(x, gamma)
fisherkurtosis(x)

fisherkurtosis(x, gamma)

Arguments

X

a vector of numbers, the sample data (mandatory);

precisionMeasures

precisionMeasure WithCustomDF 21
gamma a confidence level for CI (default 0.95).

Value

a measure of precision (SE) or an interval of precision (CI).

References

Harding B, Tremblay C, Cousineau D (2014). “Standard errors: A review and evaluation of stan-

dard error estimators using Monte Carlo simulations.” The Quantitative Methods for Psychology,
10(2), 107-123.

Harding B, Tremblay C, Cousineau D (2015). “The standard error of the Pearson skew.” The
Quantitative Methods for Psychology, 11(1), 32-36.

Examples

the confidence interval of the mean for default 95% and 90% confidence level
CI.mean(c(1,2,3))
CI.mean(c(1,2,3), gamma = 0.90)

Standard errors for standard deviation, for MAD and for fisher skew
SE.sd(c(1,2,3))

SE.MAD(c(1,2,3))

SE.fisherskew(c(1,2,3))

precisionMeasureWithCustomDF
Confidence intervals with custom degree of freedom

Description

The following three functions can be used with missing data. They return the mean, the standard
error of the mean and the confidence interval of the mean. Note that we hesitated to provide these
functions: you should deal with missing data prior to making your plot.

Usage

CIwithDF.mean(x, gamma = 0.95)

Arguments
X a vector of numbers, the sample data (mandatory);
gamma a vector containing first a confidence level for CI (default 0.95) and a custom de-

gree of freedom (if unspecified, uses n-1 where n is the number of observations
in X).

22 runDebug

Value

the confidence interval (CI) where the t value is based on the custom-set degree of freedom.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

this will issue a warning as no custom degree of freedom is provided
CIwithDF.mean(c(1,2,3), gamma = 0.90)

the confidence interval of the mean for 90% confidence level

CIwithDF.mean(c(1,2,3), gamma = c(0.90, 1.5)) # uses 1.5 as df instead of 2.

runDebug runDebug

Description

runDebug is an internal function used by GRD and superbPlot to help in debugging the functions.
It assigns in the global environment the variables that are local to a function so that they become
visible.

Usage

runDebug(where, title, vars, vals)

Arguments
where indicates where in the program runDebug was called
title string text to be displayed when this function is triggered
vars strings names of the variables to be placed in the global environment
vals numeric values to be given to the variables.
Value

puts in the globalenvironment the variables named "vars"

showSignificance 23

showSignificance Annotate significance of results on plots

Description

showSignificance is used to add an annotation to a ggplot in the form of a bracket with a text. The
bracket extends from x range (left, right) with a heigth of width. It is also possible to have the
bracket and the text vertical when y is a range (bottom, top).

Usage
showSignificance(
X}
Y,
width,
text = NULL,

panel = list(),
segmentParams = list(),
textParams = list()

)

Arguments
X (a vector of 2 when horizontal) indicates the limits of the annotation;
y (a vector of 2 when vertical) the location of the annotation in the y direction
width height of the annotation; for negative width, the legs extends towards the bottom;
text (optional) string text to be display on the opposite side of width;
panel (optional) a list to identify in which panel to put the annotation;

segmentParams (optional) a list of directives that will be sent to the geom_segment items;

textParams (optional) a list of directives that will be sent to the geom_text item.

Value

adds an annotation in a ggplot

Examples

loading required libraries
library(superb)
library(ggplot2)
library(grid)

making one random data set with three factors 2 x 3 x (3)
dta <- GRD(

BSFactors = c("Group(2)","Age(3)"),

WSFactors = c("Moment(3)"),

showSignificance

Population = list(mean = 75, stddev = 5),
Effects = list("Group” = slope(10))
)

making a two-factor plot and a three-factor plots (having panels)
plt2 <- superbPlot(dta,

BSFactor = c("Group”),

WSFactor = c("Moment(3)"),

variables = c("DV.1","DV.2","DV.3"),

adjustments = list(purpose="difference"),

factorOrder = c("Moment”,"Group”)

plt3 <- superbPlot(dta,
BSFactor = c("Group”,"Age"),
WSFactor = c("Moment(3)"),
variables = c("DV.1","DV.2","DV.3"),
adjustments = list(purpose="difference"),
factorOrder = c("Moment”,"Group”, "Age")

)

lets decorate these plots a bit...
plt2 <- plt2 + scale_fill_manual(name = "Group",
labels = c("Easy”, "Hard"),
values = c("blue”, "purple"”)) +
scale_colour_manual(name = "Group",
labels = c("Easy”, "Hard"),
values = c("blue”, "purple"”)) +
coord_cartesian(ylim = c(50,100), xlim = c(0.5, 3.9))
plt3 <- plt3 + scale_fill_manual(name = "Group”,
labels = c("Easy”, "Hard"),
values = c("blue”, "purple”)) +
scale_colour_manual(name = "Group”,
labels = c("Easy”, "Hard"),
values = c("blue”, "purple"”)) +
coord_cartesian(ylim = c(50,105))

a very basic example
plt2 + showSignificance(c(@.75, 1.25), 90, -1, "++1++")

the annotation can be vertical when y is a vector with bottom and top location:
plt2 + showSignificance(3.75, c(70,80), -0.1, "++1++")

an example with panels; the "panel” argument is used to identify on
which panel to put the annotation (or else they appear on all panels)
and with arms of differing lengths, and one flat ending

plt3 +
showSignificance(c(@.75, 1.25), 90, -2.5, "++1++") panel = list(Age= 1)) +
showSignificance(c(1.75, 2.25), 90, -2.5, "++2++") panel = list(Age= 2)) +
showSignificance(c(@.75, 1.25), 90, c(-10,-5), "++3++", panel = list(Age= 3)) +
showSignificance(c(2.00, 3.25), 95, -10, "++4++" | panel = list(Age= 3)) +
showSignificance(c(1.75, 2.25), 85, @, panel = list(Age= 3))

here, we send additional directives to the annotations

ShroutFleissICC1 25

plt3 +
showSignificance(c(@.75, 1.25), 90, -5, "++1++" panel = list(Age= 1)) +
showSignificance(c(1.75, 2.25), 95, -10, "++2++", panel = list(Age = 2),

textParams = list(size = 3, # smaller font
family = "mono", # courrier font
colour= "chartreuse3” # dark green color
),
segmentParams = list(size = 1., # thicker lines
arrow = arrow(length = unit(0.2, "cm”)), # arrow heads
colour = "chartreuse3” # dark green color as well
)
) +
showSignificance(c(1.75, 3.25), 95, -30, "++3++", panel = list(Age = 3),
textParams = list(size = 5, # larger font
family = "serif", # times font
alpha = 0.3), # transparent
segmentParams = list(size = 2.,
arrow = arrow(length = unit(@.2, "cm")),
alpha = 0.3,
lineend = "round” # so that line end overlap nicely
)
)
ShroutFleissICC1 Shrout and Fleiss intra-class correlation functions
Description

The functions ShroutFleissICC1, ShroutFleissICC11 and ShroutFleissICC1k computes the intra-
class correlation ICC for a given data frame containing repeated measures in columns cols when
the measures are in distinct clusters, identified in column clustercol. See (Shrout and Fleiss 1979).

Usage

ShroutFleissICC1(dta, clustercol, cols)

Arguments
dta A data frame containing within-subject measures, one participant per line;
clustercol is the column index where cluster belonging are given;
cols A vector indicating the columns containing the measures.

Value

ICC the intra-class measure of association.

slope

References

Shrout PE, Fleiss JL (1979). “Intraclass correlations: uses in assessing rater reliability.” Psycholog-
ical bulletin, 86(2), 420.

Shrout PE, Fleiss JL (1979). “Intraclass correlations: uses in assessing rater reliability.” Psycholog-
ical bulletin, 86(2), 420.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(
clus <- ¢(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
coll <- c(2, 4, 4, 6, 4, 5, 8, 8, 5,8, 9, 9)
))

ShroutFleissICC1(dta, 1, 2)

0.434343434
ShroutFleissICC11(dtal, 1], dta[,2])
0.434343434

dta2 <- data.frame(cbind(
clus <- c(1, 1, 1,1, 2, 2, 2, 2, 3, 3, 3, 3),
coll <- ¢(1, 3, 3, 5,3, 4,7,7, 4,17, 8, 8),
coll <- c(2, 4, 4, 6, 4,5, 8,8,5,8,09,9),
coll <- ¢(3, 5, 5, 7, 5,6, 9,9, 6,9, 10, 10)

)

ShroutFleissICC1(dta2, 1, 2:4)

0.7543859649

ShroutFleissICC1k(dta2[, 11, dta2[,2:4]1)
0.7543859649

slope Effect description

Description

There is four ways that effects can be defined in GRD. "factor = slope(s)" will vary the means by
an amount of s for each step of the factor; "factor = extent(s)" will vary the means uniformly so that
there is a difference of s between the first and the last factor level; "factor = custom(a,b,c..)" will alter
each means by an amount of a for the first, b for the second, etc. Finally "factor = Rexpression("R
code")" will apply R code to all levels of the factors. R code result alters the base mean.

Usage

slope(s)

extent(s)

subjectCentering Transform 27

custom(...)

Rexpression(str)
Arguments
s the size of the effect

a sequence with the sizes of the effects

str R code string

Value

These internal functions are not meant to be used in isolation in any meaningful way...

subjectCenteringTransform
subject-centering transform

Description
subjectCenteringTransform is a transformation that can be applied to a matrix of data. the resulting
matrix have means that are centered on the grand mean, subject-wise (Cousineau 2005).

Usage

subjectCenteringTransform(dta, variables)

Arguments
dta a data.frame containing the data in wide format;
variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged
Value

a data.frame of the same form as dta with the variables transformed.

References

Cousineau D (2005). “Confidence intervals in within-subject designs: A simpler solution to Loftus
and Masson’s method.” Tutorials in Quantitative Methods for Psychology, 1,42 —45. doi: 10.20982/
tqmp.01.1.p042.

https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042

28 summarysStatistics

summaryStatistics Additional summary statistics

Description

superb adds a few summary statistics that can be used to characterize a dataset. All comes with
SE.fct() and CI.fct(). See (Harding et al. 2014; Harding et al. 2015) for more. superbPlot-
compatible summary statistics functions must have one parameter:

Usage

hmean(x)
gmean(x)
MAD(x)
fisherskew(x)
pearsonskew(x)

fisherkurtosis(x)

Arguments

X a vector of numbers, the sample data (mandatory);

Value

a summary statistic describing the sample.

References

Harding B, Tremblay C, Cousineau D (2014). “Standard errors: A review and evaluation of stan-

dard error estimators using Monte Carlo simulations.” The Quantitative Methods for Psychology,
10(2), 107-123.

Harding B, Tremblay C, Cousineau D (2015). “The standard error of the Pearson skew.” The
Quantitative Methods for Psychology, 11(1), 32-36.

Examples

the confidence interval of the mean for default 95% and 90% confidence level

gmean(c(1,2,3)) # the geometric mean; also available in psych::geometric.mean
hmean(c(1,2,3)) # the harmonic mean; also available in psych::harmonic.mean

MAD(c(1,2,3)) # the median absolute deviation to the median (not the same as mad)
fisherskew(c(1,2,3)) # the Fisher skew corrected for sample size

fisherkurtosis(c(1,2,3)) # the Fisher kurtosis corrected for sample size

superbData 29
pearsonskew(c(1,2,3)) # the Pearson skew
superbData Obtain summary statistics with correct error bars.

Description

The function suberbData() computes standard error or confidence interval for various descriptive
statistics under various designs, sampling schemes, population size and purposes, according to the
suberb framework. See (Cousineau et al. 2021) for more.

Usage

superbData(
data,
BSFactors = NULL,
WSFactors = NULL,
WSDesign = "fullfactorial”,
factorOrder = NULL,
variables,
statistic = "mean”,
errorbar = "CI",
gamma = 0.95,
adjustments = list(purpose = "single", popSize = Inf, decorrelation = "none”,

samplingDesign = "SRS"),
preprocessfct = NULL,
postprocessfct = NULL,

clusterColumn = ""
)
Arguments

data Dataframe in wide format

BSFactors The name of the columns containing the between-subject factor(s)

WSFactors The name of the within-subject factor(s)

WSDesign the within-subject design if not a full factorial design (default "fullfactorial")

factorOrder Order of factors as shown in the graph (x axis, groups, horizontal panels, vertical
panels)

variables The dependent variable(s)

statistic The summary statistic function to use

errorbar The function that computes the error bar. Should be "CI" or "SE" or any function
name. Defaults to "CI"

gamma The coverage factor; necessary when errorbar == "CI". Default is 0.95.

30 superbData

adjustments List of adjustments as described below. Defaultis adjustments = list(purpose

="single", popSize = Inf, decorrelation = "none”, samplingDesign = "SRS")

preprocessfct is a transform (or vector of) to be performed first on data matrix of each group
postprocessfct is a transform (or vector of)

clusterColumn used in conjunction with samplingDesign = "CRS", indicates which column
contains the cluster membership

Details
The possible adjustements are the following

* popsize: Size of the population under study. Defaults to Inf

* purpose: The purpose of the comparisons. Defaults to "single". Can be "single", "difference",
or "tryon".

* decorrelation: Decorrelation method for repeated measure designs. Chooses among the meth-
ods "CM", "LM", "CA" or "none". Defaults to "none".

» samplingDesign: Sampling method to obtain the sample. implemented sampling is "SRS"
(Simple Randomize Sampling) and "CRS" (Cluster-Randomized Sampling).

Value

a list with (1) the summary statistics in summaryStatistics (2) the raw data in long format in rawData
(using numeric levels for repeated-measure variables).

References

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1-18. doi: 10.1177/25152459211035109.

Examples

Basic example using a built-in dataframe as data;
by default, the mean is computed and the error bar are 95% confidence intervals
(it also produces a $rawData dataframe, not shown here)
res <- superbData(ToothGrowth, BSFactors = c("dose"”, "supp"),
variables = "len")
res$summaryStatistics

Example introducing adjustments for pairwise comparisons
and assuming that the whole population is limited to 200 persons
res <- superbData(ToothGrowth, BSFactors = c("dose"”, "supp"),
variables = "len",
statistic = "median"”, errorbar = "CI", gamma = .80,
adjustments = list(purpose = "difference”, popSize = 200))
res$summaryStatistics

https://doi.org/10.1177/25152459211035109

superbPlot

31

superbPlot

summary plot of any statistics with adjusted error bars.

Description

The function suberbPlot() plots standard error or confidence interval for various descriptive
statistics under various designs, sampling schemes, population size and purposes, according to the
suberb framework. See (Cousineau et al. 2021) for more.

Usage

superbPlot(
data,
BSFactors
WSFactors

NULL,
NULL,

WSDesign = "fullfactorial”,

factorOrder = NULL,

variables,

statistic = "mean”,

errorbar = "CI",

gamma = 0.95,

adjustments = list(purpose = "single", popSize = Inf, decorrelation = "none",

samplingDesign = "SRS"),
showPlot = TRUE,
plotStyle = "bar”,

preprocessfct

= NULL,

postprocessfct = NULL,

nn

clusterColumn = s

Arguments

data
BSFactors
WSFactors
WSDesign

factorOrder

variables
statistic

errorbar

gamma

Dataframe in wide format

The name of the columns containing the between-subject factor(s)

The name of the within-subject factor(s)

the within-subject design if not a full factorial design (default "fullfactorial™)

Order of factors as shown in the graph (in that order: x axis, groups, horizontal
panels, vertical panels)

The dependent variable(s) as strings
The summary statistic function to use as a string

The function that computes the error bar. Should be "CI" or "SE" or any function
name if you defined a custom function. Default to "CI"

The coverage factor; necessary when errorbar == "CI". Default is 0.95.

32 superbPlot

adjustments List of adjustments as described below. Defaultis adjustments = list(purpose
="single", popSize = Inf, decorrelation = "none”, samplingDesign = "SRS")

showPlot Defaults to TRUE. Set to FALSE if you want the output to be the summary
statistics and intervals.

plotStyle The type of object to plot on the graph. See full list below. Defaults to "bar".
preprocessfct is a transform (or vector of) to be performed first on data matrix of each group
postprocessfct is a transform (or vector of)

clusterColumn used in conjunction with samplingDesign = "CRS", indicates which column
contains the cluster membership

In addition to the parameters above, superbPlot also accept a number of optional
arguments that will be transmitted to the plotting function, such as pointParams
(a list of ggplot2 parameters to input inside geoms; see ?geom_bar2) and error-
barParams (a list of ggplot2 parameters for geom_errorbar; see ?geom_errorbar)

Details

The possible adjustements are the following

* popsize: Size of the population under study. Defaults to Inf

* purpose: The purpose of the comparisons. Defaults to "single". Can be "single", "difference",
or "tryon".

¢ decorrelation: Decorrelation method for repeated measure designs. Chooses among the meth-
ods "CM", "LM", "CA" or "none". Defaults to "none".

» samplingDesign: Sampling method to obtain the sample. implemented sampling is "SRS"
(Simple Randomize Sampling) and "CRS" (Cluster-Randomized Sampling).

In version 0.9.5, the layouts for plots are the following:

* "bar" Shows the summary statistics with bars and error bars;

* "line" Shows the summary statistics with lines connecting the conditions over the first factor;
* "point" Shows the summary statistics with isolated points

* "pointjitter" Shows the summary statistics along with jittered points depicting the raw data;

* "pointjitterviolin" Also adds violin plots to the previous layout

* "pointindividualline" Connects the raw data with line along the first factor (which should be a
repeated-measure factor)

* "raincloud" Illustrates the distribution with a cloud (half_violin_plot) and jittered dots next to
it. Looks better when coordinates are flipped +coord_flip().
Value

a plot with the correct error bars or a table of those summary statistics. The plot is a ggplot2 object
with can be modified with additional declarations.

superbPlot 33

References

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1-18. doi: 10.1177/25152459211035109.

Examples

Basic example using a built-in dataframe as data.
By default, the mean is computed and the error bar are 95% confidence intervals
superbPlot(ToothGrowth, BSFactors = c("dose"”, "supp"),

variables = "len")

Example changing the summary statistics to the median and
the error bar to 80% confidence intervals
superbPlot(ToothGrowth, BSFactors = c("dose"”, "supp"),
variables = "len", statistic = "median”, errorbar = "CI", gamma = .80)

Example introducing adjustments for pairwise comparisons
and assuming that the whole population is limited to 200 persons
superbPlot(ToothGrowth, BSFactors = c("dose"”, "supp"),

variables = "len",

adjustments = list(purpose = "difference”, popSize = 200))

This example adds ggplot directives to the plot produced

library(ggplot2)

superbPlot(ToothGrowth, BSFactors = c("dose"”, "supp"),
variables = "len") +

xlab("Dose”) + ylab("Tooth Growth") +

theme_bw()

This example is based on repeated measures

library(lsr)

library(gridextra)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

define shorter column names...
names(Orange) <- c("Tree”,"age","circ")
turn the data into a wide format

Orange.wide <- longToWide(Orange, circ ~ age)

Makes the plots two different way:
pl=superbPlot(Orange.wide, WSFactors = "age(7)",
variables = c("circ_118","circ_484","circ_664","circ_1004","circ_1231","circ_1372","circ_1582"),
adjustments = list(purpose = "difference”, decorrelation = "none")
) +
xlab("Age level”) + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="Basic confidence intervals")
p2=superbPlot(Orange.wide, WSFactors = "age(7)",
variables = c("circ_118","circ_484","circ_664","circ_1004","circ_1231","circ_1372","circ_1582"),
adjustments = list(purpose = "difference”, decorrelation = "CA")
) +
xlab("Age level”) + ylab("Trunk diameter (mm)") +

https://doi.org/10.1177/25152459211035109

34 superbPlot.bar

coord_cartesian(ylim = c(0,250)) + labs(title="Decorrelated confidence intervals")
grid.arrange(p1,p2,ncol=2)

superbPlot.bar superbPlot "bar’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.bar(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
barParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)
Arguments
summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;
xfactor a string with the name of the column where the factor going on the horizontal

axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the

plot;
addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";
rawdata always contains "DV" for each participants and each level of the factors
barParams (optional) list of graphic directives that are sent to the geom_bar layer
errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

superbPlot.halfwidthline 35

Value

a ggplot object

Examples

This will make a plot with bars

superbPlot (ToothGrowth,
BSFactors = c("dose","supp”), variables = "len”,
plotStyle="bar"

)

if you extract the data with superbData, you can
run this layout directly
#tprocessedData <- superbData(ToothGrowth,

BSFactors = c("dose”,"supp”), variables = "len”
#)

#

#superbPlot.bar(processedData$summaryStatistic,

"dose",

"supp”,

"o,

processedData$rawData)

superbPlot.halfwidthline
superbPlot "halfwidthline’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. The half-width confidence interval line plot is EXPERI-
MENTAL. It divides the CI length by two, one thick section and one thin section. The functions, to
be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.halfwidthline(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
lineParams = list(),
errorbarParams = list(),
errorbarlightParams = list(),
facetParams = list(),

36 superbPlot.halfwidthline

xAsFactor = TRUE

)
Arguments
summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;
xfactor a string with the name of the column where the factor going on the horizontal

axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the

plot;
addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";
rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer
lineParams (optional) list of graphic directives that are sent to the geom_bar layer
errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer
errorbarlightParams
(optional) graphic directives for the second half of the error bar;
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with lines
superbPlot(ToothGrowth,
BSFactor = c("dose”,"supp”), variables = "len”,
plotStyle="halfwidthline"
)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,

BSFactor = c("dose”,"supp”), variables = "len”

#)

#
#superbPlot.halfwidthline(processedData$summaryStatistic,
"dose”,

"supp”,

"o~

processedData$rawData)

superbPlot.line

37

superbPlot.line

superbPlot ’line’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.line(

summarydata,
xfactor,

groupingfactor,

addfactors,

rawdata = NULL,
pointParams = list(),

lineParams =

list(),

errorbarParams = list(),

facetParams

list(),

xAsFactor = TRUE

Arguments

summarydata

xfactor

groupingfactor

addfactors

rawdata
pointParams
lineParams

errorbarParams

facetParams

xAsFactor

a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

a string with the name of the column where the factor going on the horizontal
axis is given;

a string with the name of the column for which the data will be grouped on the
plot;

a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";

always contains "DV" for each participants and each level of the factors
(optional) list of graphic directives that are sent to the geom_bar layer
(optional) list of graphic directives that are sent to the geom_bar layer

(optional) list of graphic directives that are sent to the geom_superberrorbar
layer

(optional) list of graphic directives that are sent to the facet_grid layer

(optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

38 superbPlot.lineBand

Value

a ggplot object

Examples

This will make a plot with lines
superbPlot(ToothGrowth,
BSFactors = c("dose"”,"supp”), variables = "len",
plotStyle="1line"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,

BSFactors = c("dose”,"supp”), variables = "len"”
#)

#

#superbPlot.line(processedData$summaryStatistic,

"dose",

"supp”,

"o,

processedData$rawData)

superbPlot.lineBand superbPlot ’lineBand’ layout

Description

The lineBand layout displays an error band instead of individual error bars. This layout is con-
venient when you have many points on your horizontal axis (so that the error bars are difficult to
distinguish) and when the results are fairly smooth.

The functions has these parameters:

Usage

superbPlot.lineBand(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
lineParams = list(),
facetParams = list(),
errorbandParams = list(),
xAsFactor = TRUE

superbPlot.lineBand 39

Arguments
summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;
xfactor a string with the name of the column where the factor going on the horizontal

axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the

plot;
addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";
rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_point layer
lineParams (optional) list of graphic directives that are sent to the geom_jitter layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
errorbandParams

(optional) list of graphic directives that are sent to the geom_ribbon layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

Value

or discrete (default is discrete)

a ggplot object

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

this creates a fictious time series at 100 time points obtained in two conditions:
dta <- GRD(WSFactors = "timepoints (50) : condition(2)",

SubjectsPerGroup = 100,

RenameDV = "activation”,

Effects = list("timepoints” = extent(5), "condition” = extent(3)),
Population=1ist(mean=50,stddev=10,rho=0.75)

)
This will make a plot with error band
superbPlot(dta,

WSFactors = c("timepoints(50)"”, "condition(2)"),

variables = colnames(dta)[2:101], ## all the names of the dataframe except "id"
adjustments = list(

purpose = "single",
decorrelation = "CM" ## or none for no decorrelation
),
plotStyle="1lineBand", # note the uppercase B
pointParams = list(size= 1) # making points smaller has better look

40 superbPlot.point

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(dta,

WSFactors = c("timepoints(100)", "condition(2)"), variables = colnames(dta)[2:201],
adjustments = list(

purpose = "single",

decorrelation = "CM" ## or none for no decorrelation
)

#)

#

#superbPlot.lineBand(processedData$summaryStatistic,

"timepoints”,

"condition”,

#

processedData$rawData)

superbPlot.point superbPlot ’point’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.point(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)
Arguments
summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;
xfactor a string with the name of the column where the factor going on the horizontal

axis is given;
groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

superbPlot.pointindividualline 41

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar

layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with points

superbPlot (ToothGrowth,
BSFactors = c("dose"”,"supp”), variables = "len",
plotStyle = "point”

)

if you extract the data with superbData, you can
run this layout directly
#tprocessedData <- superbData(ToothGrowth,

BSFactors = c("dose”,"supp”), variables = "len”
#)

#
#superbPlot.point(processedData$summaryStatistic,
"dose",

"supp”,

"o,

processedData$rawData)

superbPlot.pointindividualline
superbPlot point and individual-line layout for within-subject design

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

42

superbPlot.pointindividualline

Usage
superbPlot.pointindividualline(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
lineParams = list(),
errorbarParams = list(),
facetParams = list()
)
Arguments
summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;
xfactor a string with the name of the column where the factor going on the horizontal
axis is given;
groupingfactor a string with the name of the column for which the data will be grouped on the
plot;
addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";
rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer
lineParams (optional) list of graphic directives that are sent to the geom_bar layer
errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
Value
a ggplot object
Examples

This will make
library(lsr)

a plot with points and individual lines for each subject's scores

we take the Orange built-in data.frame which has a within-subject design

names(Orange) <-

non

c("Tree", "age","circ")

turn the data into a wide format
Orange.wide <- longToWide(Orange, circ ~ age)

the identifier
Orange.wide$id =

to each tree must be in a column called id
Orange.wide$Tree

Makes the plots two different way:

superbPlot.pointjitter 43

superbPlot(Orange.wide, WSFactors = "age(7)",

variables = c("circ_118","circ_484","circ_664","circ_1004","circ_1231","circ_1372","circ_1582"),
adjustments = list(purpose = "difference”, decorrelation = "none"),
plotStyle= "pointindividualline”

)

if you extract the data with superbData, you can
run this layout directly

#processedData <- superbData(Orange.wide, WSFactors = "age(7)",

variables = c("circ_118","circ_484","circ_664","circ_1004","circ_1231","circ_1372","circ_1582"),
adjustments = list(purpose = "difference”, decorrelation = "none"),

#)

#

#superbPlot.pointindividualline(processedData$summaryStatistic,

"age",

NULL,

"o,

processedData$rawData)

superbPlot.pointjitter
superbPlot point-and-jitter dots layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.pointjitter(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
jitterParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

44

superbPlot.pointjitterviolin

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the

plot;
addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";
rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer

jitterParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar

layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with jittered points, aka dot plots
superbPlot(ToothGrowth,
BSFactors = c("dose"”,"supp”), variables = "len",
plotStyle="pointjitter"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,

BSFactors = c("dose”,"supp”), variables = "len"”

#)

#
#superbPlot.pointjitter(processedData$summaryStatistic,
"dose",

"supp”,

"o~

processedData$rawData)

superbPlot.pointjitterviolin
superbPlot point, jitter and violin plot layout

superbPlot.pointjitterviolin 45

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.pointjitterviolin(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
jitterParams = list(),
violinParams = list(),
errorbarParams = list(),
facetParams = list()

)
Arguments
summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;
xfactor a string with the name of the column where the factor going on the horizontal

axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer
jitterParams (optional) list of graphic directives that are sent to the geom_bar layer
violinParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

Value

a ggplot object

46

Examples

superbPlot.raincloud

This will make a plot with jittered points and violins for the overall distribution

superbPlot(ToothGrowth,
BSFactors = c("dose"”,"supp”), variables = "len",
plotStyle = "pointjitterviolin”

)

if you extract the data with superbData, you can
run this layout directly

#processedData <- superbData(ToothGrowth,

BSFactors = c("dose”,"supp”), variables = "len”
#)

#
#superbPlot.pointjitterviolin(processedData$summaryStatistic,
"dose",

"supp”,

o~

processedData$rawData)

superbPlot.raincloud superbPlot raincloud’ layout

Description

The raincloud layout display jittered dots as well as a "cloud" (half of a violin) above them. See
Allen, Poggiali, Whitaker, Marshall, & Kievit (2018) The functions has these parameters:

Usage

superbPlot.raincloud(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
violinParams = list(),
jitterParams = list(),
pointParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each

level of the factors;

superbPlot.raincloud 47

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "factl ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors
violinParams (optional) list of graphic directives that are sent to the geom_violin layer
jitterParams (optional) list of graphic directives that are sent to the geom_jitter layer
pointParams (optional) list of graphic directives that are sent to the geom_point layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar

layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

Value

a ggplot object

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

This will make a plot with raincloud; they are better seen rotated: +coord_flip()
superbPlot(ToothGrowth,

BSFactors = c("dose"”,"supp”), variables = "len",

plotStyle="raincloud”

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,

BSFactors = c("dose”,"supp”), variables = "len"”
#)

#
#superbPlot.raincloud(processedData$summaryStatistic,
"dose",

"supp”,

"o~

processedData$rawData)

48 superbShiny

superbShiny User Interface to get summary plot of any statistics with adjusted error
bars.

Description

The function suberbShiny () provides a simple user interface to plot standard error or confidence

interval for various descriptive statistics under various designs, population size and purposes, ac-

cording to the suberb framework. See (Cousineau et al. 2021) for more. Also see this video from
(Walker 2021) for a demo using the shinyapps.io installation accessible at dcousin3.shinyapps.io/superbshiny
Limitations: it is not possible to use custom-made statistics with the graphical user interface, nor is

it possible to request an adjustment for cluster- randomized sampling. These options are available

with superbPlot().

Usage

superbShiny ()

Value

A plot that can be cut-and-paste.

References

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1-18. doi: 10.1177/25152459211035109.

Walker JAL (2021). Summary plots with adjusted error bars (superb). https://www.youtube.
com/watch?v=rw_6115nVus.

Examples

Launch the user interface:

if (interactive())
superbShiny()

https://www.youtube.com/watch?v=rw_6ll5nVus/
https://dcousin3.shinyapps.io/superbshiny/
https://doi.org/10.1177/25152459211035109
https://www.youtube.com/watch?v=rw_6ll5nVus
https://www.youtube.com/watch?v=rw_6ll5nVus

TMB1964r 49

TMB1964r Data of Tulving, Mandler, & Baumal, 1964 (reproduction of 2021)

Description

The data comes from Bradley-Garcia and others (2021). It is a near exact replication of the original
study from (Tulving et al. 1964).

The design is a (7) x 4 with: 7 levels of stimulus duration (within-subject) and 4 between-subject
conditions. Additional variables included in the reproduction is the primary language of the partic-
ipant in which he/she participated (mainly francophones and anglophones; and the gender (mainly
male and female).

Usage
data(TMB1964r)

Format

An object of class data.frame.

References

Bradley-Garcia M, others 3 (2021). “Getting the most from your curves: Exploring and reporting
data using informative graphical techniques.” The Quantitative Methods for Psychology, 17(2), r1-
r10. doi: 10.20982/tqmp.17.2.r001.

Tulving E, Mandler G, Baumal R (1964). “Interaction of two sources of information in tachis-
toscopic word recognition.” Canadian Journal of Psychology/Revue canadienne de psychologie,
18(1), 62.

Examples

library(ggplot2)
data(TMB1964r)
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

general plot ignoring covariates sex and languages with only defaults
We illustrate correlation- and difference-adjusted 95% confidence intervals of the mean
superbPlot(TMB1964r,

WSFactors = "T(7)", # the within-subject factor (spanning 7 columns)

BSFactors = "Condition”, # the between-subject factor (4 levels)

variables = c("T1","T2","T3","T4" "T5","T6","T7"),

adjustments = list(purpose="difference”, decorrelation="CM"),

plotStyle = "line”

https://doi.org/10.20982/tqmp.17.2.r001

50

TMB1964r

We add directives for the error bars (thick), for the points (larger) and for the lines (thick)
plt <- superbPlot(TMB1964r,
WSFactors = "T(7)",
BSFactors = "Condition”,
variables = c("T1","T2","T3","T4" "T5", "T6","T7"),
adjustments = list(purpose="difference”, decorrelation="CM"),
plotStyle = "line",
errorbarParams = list(width = 0.5, size=1.25, position = position_dodge(.5)),
pointParams = list(size=2.5, position = position_dodge(.5)),
lineParams = list(size=1.25)
)
plt

Additional directives to set manually the colors, shapes, thick marks and labels.
plt +
scale_colour_manual(
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("blue”, "black"”, "purple”, "red")) +
scale_shape_manual(
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),

values = c("circle”, "triangle”, "square"”, "plus")) +
theme_bw(base_size = 16) +
labs(x = "Exposure duration (ms)"”, y = "Mean of correct responses”,

colour = "Context length\n”, shape = "Context length\n") +
scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",

"3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))

Exploring three factors simultaneously: T, Condition and Sex (last two between-group)
superbPlot (TMB1964r,
WSFactors = "T(7)",
BSFactors = c("”Condition”,"Sex"),
variables = c("T1","T2","T3","T4","T5","T6","T7"),
adjustments = list(purpose="difference”, decorrelation="CM"),
plotStyle = "line”,
errorbarParams = list(size=0.15, position = position_dodge(.5)),
pointParams = list(size=2.5, position = position_dodge(.5)),
lineParams = list(size=0.25)
) +
scale_colour_manual(
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("blue”, "black”, "purple”, "red")) +
scale_shape_manual (
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),

values = c("circle”, "triangle", "square”, "plus")) +
theme_bw(base_size = 16) +
labs(x = "Exposure duration (ms)", y = "Mean of correct responses”,
colour = "Context length\n”, shape = "Context length\n") +
scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",

"31="50 0", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))

twoStepTransform 51

#only keep 2 sex and 2 languages; the remaining cases are too sparse.
mee3 <- TMB1964r[(TMB1964r$Language !'= "I prefer not to answer”")&TMB1964r$Language !="0ther",]

advanced plots are available, such as pointjitter
and pointjitterviolin : a plot that superimposes the distribution as a violin plot

#

superbPlot (mee3,
WSFactors = "T(7)",
BSFactors = c("Condition"”,"Language"),
variables = c("T1","T2","T3","T4","T5","T6","T7"),
adjustments = list(purpose="difference”, decorrelation="CM"),
plotStyle = "pointjitterviolin”,
jitterParams = list(alpha = 0.4), #near transparent jitter points
violinParams = list(alpha = 0.2)

) +

scale_fill_manual(name = "Amount of context”,

labels = c("Context 0", "Context 2", "Context 4", "Context 8"),

values = c("blue”, "black”, "purple”, "red")) +
scale_colour_manual(name = "Amount of context”,

labels = c("Context 0", "Context 2", "Context 4", "Context 8"),

values = c("blue”, "black”, "purple”, "red")) +

scale_shape_manual(name = "Amount of context”,

labels = c("Context 0", "Context 2", "Context 4", "Context 8"),

values = c("circle”, "triangle", "square", "cross")) +
theme_bw(base_size = 16) +
labs(x = "Exposure duration (ms)", y = "Mean of correct responses”)+
scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",

"37="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))

twoStepTransform two-step transform for subject centering and bias correction
Description

twoStepTransform, is a transformation that can be applied to a matrix of data. The resulting matrix
is both subject-centered and bias corrected, a technique called the CM technique (Baguley 2012;
Cousineau 2005; Morey 2008)

Usage

twoStepTransform(dta, variables)

Arguments
dta a data.frame containing the data in wide format;
variables a vector of column names on which the transformation will be applied. the

remaining columns will be left unchanged

52 WelchDegreeOfFreedom

Value

a data.frame of the same form as dta with the variables transformed.

References

Baguley T (2012). “Calculating and graphing within-subject confidence intervals for ANOVA.” Be-
havior Research Methods, 44, 158 — 175. doi: 10.3758/s1342801101237.

Cousineau D (2005). “Confidence intervals in within-subject designs: A simpler solution to Loftus
and Masson’s method.” Tutorials in Quantitative Methods for Psychology, 1,42 —45. doi: 10.20982/
tqmp.01.1.p042.

Morey RD (2008). “Confidence Intervals from Normalized Data: A correction to Cousineau
(2005).” Tutorials in Quantitative Methods for Psychology, 4, 61 —64. doi: 10.20982/tqmp.04.2.p061.

WelchDegreeOfFreedom Welch’s rectified degree of freedom

Description

When variance across groups are heterogeneous, the Student t distribution with n - 1 df is not the
exact distribution. However, Welch (1947), using methods of moments, was able to find the best-
fitting t distribution. This distribution has degree of freedom reduced based on the sample sizes and
the variances of the group tests. The present function returns the rectified degree of freedom

Usage

WelchDegreeOfFreedom(dta, cols, groupingcols)

Arguments
dta A data frame containing within-subject measures, one participant per line;
cols A vector indicating the columns containing the measures.

groupingcols A vector indicating the columns containing the groups.

Value

df the degrees of freedom rectified according to Welch (1947).

References

There are no references for Rd macro \insertAllCites on this help page.

https://doi.org/10.3758/s13428-011-0123-7
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.04.2.p061

WinerCompoundSymmetry Test 53

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

DV.1 = ¢(3., 6., 2., 2., 5.),
DV.2 = c(4., 5., 4., 4., 3.),
DV.3 = c(2., 7., 7., 8., 6.),
DV.4 = c(6., 8., 4., 6., 5.),
grp =c(1., 1., 2., 2., 2.)

))
performs the test (here rectified df = 1.898876)
WelchDegreeOfFreedom(dta, "DV.1","grp")

WinerCompoundSymmetryTest
Winer’s test of compound symmetry

Description

Run a test of compound symmetry. generates a data frame of random data suitable for analyses. It
assesses the significance of the null hypothesis that the covariance matrix is compound symmetric.
This test is given without demonstration in (Winer et al. 1991), p. 517.

Usage

WinerCompoundSymmetryTest(dta, cols)

Arguments
dta A data frame containing within-subject measures, one participant per line;
cols A vector indicating the columns containing the measures.

Value

p the p-value of the null hypothesis that the data are compound symmetric.

References
Winer BJ, Brown DR, Michels KM (1991). Statistical principles in experimental design. McGraw-
Hill, New York.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

coll <- ¢(3., 6., 2., 2., 5.),
col2 <- c(4., 5., 4., 4., 3.),
col3 <- c¢c(2., 7., 7., 8., 6.),

54

col4 <- c(6., 8., 4., 6., 5.)
)
performs the test (here p = 0.6733)
WinerCompoundSymmetryTest (dta)

WinerCompoundSymmetry Test

Index

+ datasets
dataFigurel, 6
dataFigure2,7
dataFigure3, 8
dataFigure4, 9
TMB1964r, 49

biasCorrectionTransform, 3
bootstrapPI.gmean
(bootstrapPrecisionMeasures), 3
bootstrapPI.hmean
(bootstrapPrecisionMeasures), 3
bootstrapPI.mean
(bootstrapPrecisionMeasures), 3
bootstrapPI.median
(bootstrapPrecisionMeasures), 3
bootstrapPI.sd
(bootstrapPrecisionMeasures), 3
bootstrapPI.var
(bootstrapPrecisionMeasures), 3
bootstrapPrecisionMeasures, 3
bootstrapSE.gmean
(bootstrapPrecisionMeasures), 3
bootstrapSE.hmean
(bootstrapPrecisionMeasures), 3
bootstrapSE.mean
(bootstrapPrecisionMeasures), 3
bootstrapSE.median
(bootstrapPrecisionMeasures), 3
bootstrapSE.sd
(bootstrapPrecisionMeasures), 3
bootstrapSE.var
(bootstrapPrecisionMeasures), 3

CI.fisherkurtosis (precisionMeasures),
19

CI.fisherskew (precisionMeasures), 19

CI.gmean (precisionMeasures), 19

CI.hmean (precisionMeasures), 19

CI.IQR (precisionMeasures), 19

55

CI.MAD (precisionMeasures), 19

CI.mean (precisionMeasures), 19

CI.meanNArm (measuresWithMissingData),
18

CI.median (precisionMeasures), 19

CI.pearsonskew (precisionMeasures), 19

CI.sd (precisionMeasures), 19

CI.var (precisionMeasures), 19

CIwithDF.mean
(precisionMeasureWithCustomDF),
21

CousineaulLaurencellelLambda, 5

custom (slope), 26

dataFigurel, 6
dataFigure2, 7
dataFigures, 8
dataFigure4, 9

extent (slope), 26

fisherkurtosis (summaryStatistics), 28
fisherskew (summaryStatistics), 28

geom_superberrorbar, 10
gmean (summaryStatistics), 28
GRD, 13

hmean (summaryStatistics), 28
HyunhFeldtEpsilon, 15

MAD (summaryStatistics), 28
makeTransparent, 16
MauchlySphericityTest, 17

meanNArm (measuresWithMissingData), 18
meanNArm, (measuresWithMissingData), 18
measuresWithMissingData, 18

pearsonskew (summaryStatistics), 28
poolSDTransform, 19
precisionMeasures, 19

56

precisionMeasureWithCustomDF, 21

Rexpression (slope), 26
runDebug, 22

SE.fisherkurtosis (precisionMeasures),
19
SE.fisherskew (precisionMeasures), 19
SE.gmean (precisionMeasures), 19
SE.hmean (precisionMeasures), 19
SE.IQR (precisionMeasures), 19
SE.MAD (precisionMeasures), 19
SE.mean (precisionMeasures), 19
SE.meanNArm (measuresWithMissingData),
18
SE.median (precisionMeasures), 19
SE.pearsonskew (precisionMeasures), 19
SE.sd (precisionMeasures), 19
SE.var (precisionMeasures), 19
showHorizontalSignificance
(showSignificance), 23
showSignificance, 23
showVerticalSignificance
(showSignificance), 23
ShroutFleissICC1, 25
ShroutFleissICC11 (ShroutFleissICC1), 25
ShroutFleissICC1k (ShroutFleissICC1), 25
slope, 26
subjectCenteringTransform, 27
summaryStatistics, 28
superbData, 29
superbPlot, 31
superbPlot.bar, 34
superbPlot.halfwidthline, 35
superbPlot.line, 37
superbPlot.lineBand, 38
superbPlot.point, 40
superbPlot.pointindividualline, 41
superbPlot.pointjitter, 43
superbPlot.pointjitterviolin, 44
superbPlot.raincloud, 46
superbShiny, 48

TMB1964r, 49
twoStepTransform, 51

WelchDegreeOfFreedom, 52
WinerCompoundSymmetryTest, 53

INDEX

	biasCorrectionTransform
	bootstrapPrecisionMeasures
	CousineauLaurencelleLambda
	dataFigure1
	dataFigure2
	dataFigure3
	dataFigure4
	geom_superberrorbar
	GRD
	HyunhFeldtEpsilon
	makeTransparent
	MauchlySphericityTest
	measuresWithMissingData
	poolSDTransform
	precisionMeasures
	precisionMeasureWithCustomDF
	runDebug
	showSignificance
	ShroutFleissICC1
	slope
	subjectCenteringTransform
	summaryStatistics
	superbData
	superbPlot
	superbPlot.bar
	superbPlot.halfwidthline
	superbPlot.line
	superbPlot.lineBand
	superbPlot.point
	superbPlot.pointindividualline
	superbPlot.pointjitter
	superbPlot.pointjitterviolin
	superbPlot.raincloud
	superbShiny
	TMB1964r
	twoStepTransform
	WelchDegreeOfFreedom
	WinerCompoundSymmetryTest
	Index

