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Overview

These notes give details on how the mid-p adjustment is done. Section 1 describes the mid-p
adjustment as it is done for the exact2x2 and uncondExact2x2 functions. Section 2 describes
the mid-p adjustment as implemented in the binomMeld.test function.

1 Usual Mid-p Adjustment for Two Binomial Distri-
butions

The following is how the usual mid-p adjustment is done (for example in the exact2x2 and
uncondExact2x2 functions). The mid-p value has a long history (see e.g., Lancaster, 1961 or
the list of references in Hirji 2006, p. 50).

Let X = [X1, Xo] with X, ~ Binom(n,,0,) for a = 1,2. Suppose we are interested in
B = b(), where b(0) is some function of #; and #;. Common examples are the difference,
Ba = 02 — 01, the ratio, 8, = 02/61, and the odds ratio, £, = {62(1 —61)} / {61(1 — 65)}.

Let T'(X) be some test statistic, where larger values are most extreme with respect to the
null hypothesis. Let Oy be the set of all possible values of [f, 85] under the null hypothesis.
Then a valid (i.e., exact) p-value is

p(x,00) = Sup Prg [T(X) > T(x)] .

These exact p-values are necessarily conservative because for most § € ©y we have
Pry [p(X,00) < a] < a. A less conservative approach, but one that is no longer valid (i.e.,
no longer exact), is to use a mid-p value. The mid-p value is

Pmid(X,00) = eseugz) {Pn) T(X) >T(x)] + ;Prg T(X) = T(x)]} )

It is convenient to write ©g in terms of 5. For example,
Oy = {0:0(0) =P}

For this example, instead of writing the null hypothesis as Hy : 6 € O, we write it in terms
of B = b(0) as Hy : = [y. We are generally interested in three classes of hypotheses:
two-sided hypotheses,

Hy: B=0
Hy: B# o



or one of the one-sided hypotheses,

Alternative is Less Alternative is Greater
Hy: B> DB Hy: 8 < By
H,: B < B Hy: > po.

Let pys(x, Bo) be the p-value for testing the two-sided hypotheses, let py(x, 5y) be the p-value
for testing Hy : 5 > Py, and pr (X, 5y) be the p-value for testing Hy : 5 < fy.

Then we can create 100(1 — @)% confidence regions as the set of §y value that fail to
reject the associated null hypothesis. For example,

Cis(x,1—a) = {B:pus(x,0) > a}

gives a “two-sided” confidence region. The region may not be an interval if the p-value
function is not unimodal. This problem occurs with Fisher’s exact test (the Fisher-Irwin
version, or ‘minlike’ version). For central confidence regions we take the union of the one-
sided confidence regions, in other words,

Ce(x,1 —a) =CL(x,1 —a/2)UCy(x,1 —a/2),
where C'p and Cp are the one-sided confidence regions,

Cox1—-a/2) = {B:pr(x,0) > a/2}

and

Cu(x,1—a/2) = {f:pu(x f)>a/2}.

If the regions are intervals, and we let L(x,1—a/2) = min C(x,1—«a/2) and U(x,1—a/2) =
max Cy(x,1 — «/2), then the central interval is

Ce(x,1—a) = {L(x,1—-0a/2),U(x,1—0a/2)}.

For the mid-p confidence regions, we replace the p-values with the mid-p values.

2 Mid-p Modifications with Binomial Melding

For a single binomial response, the mid p-value and associated central confidence interval can
be represented using confidence distribution random variables. Suppose that the exact cen-
tral 100(1-a) percent binomial confidence interval for a single binomial random variable (i.e.,
the default in binom.test) is (L(1 — «/2),U(1 — «/2)). Then the lower and upper confidence
distribution random variables are respectively, W, = L(A;) and Wy = U(As), where A; and
Ay and independent uniform random variables. Let B be an independent Bernoulli random
variable with parameter 1/2. Then the 95 percent central mid-p confidence interval for the
binomial parameter is the middle 95 percent of the distribution of W = BxW 4 (1—B)*Wy,.
This is shown in the appendix of Fay and Brittain (2016).



The way the midp=TRUE option is done in binomMeld.test is to replace the upper and
lower confidence distribution random variables in the usual melding equations, with the “mid-
p” confidence distribution random variable (CD-RV) analogous to W for each group. For
example if the lower and upper CD-RVs for group 1 are Wi and Wiy, then the mid-p CD-RV
is Wi = By« Wi+ (1 — By) * Wiy, where By is a Bernoulli random variable with parameter
1/2. The mid-p CD-RV Wj is defined analogously. It is fairly simple to program a Monte
Carlo estimate of the “mid” p-value and associated confidence interval. Let g(6;,62) be the
parameter of interest (e.g., g(61,02) = 0 — 0y for parmtype="difference”). The one-sided p-
values are the proportion of times that g(Wy, W5) is < nullparm (for alternative="greater") or
> nullparm (for alternative="less"). The confidence intervals just use the appropriate quantiles
of the Monte Carlo values of g(W1, Ws).

When nmc=0, we estimate the one-sided p-values with numeric integration. Conceptually,
the usual melded p-value might be, for example when alternative="greater” and nullparm= (;:

PrigWhy, War) < Bo] = /PT[Q(Wl,WQ) < Bo|Wa = ws| Pr{Wsy = wy]

where Wiy is the upper confidence distribution random variable (CD-RV) for group 1 and
Wy, is the lower CD-RV for group 2. These CD-RVs are beta distributions (see Fay, Proschan,
and Brittain, 2015). For the mid-p version, we use

PrlgWs, W) < o] = 1 [ PrlgWas,ws) < GolWar = w]Pr{Was = u] +
1] Prlo(Wis,wa) < ol = wl PriWa = w] +
1 [ PrloOWas,w) < 5olWar = wl PriWa, = w] +
1] Pria(Was, w) < ol Wa = w]PriWa = ).

The integration simplifies for special cases (e.g., when ;1 = 0), and in other case we just use
the integrate function. For the confidence intervals we solve for the 5, values such that the
p-values equal either « (for one-sided alternatives) or /2 (for two-sided alternatives), where
alpha=1-conf.level. If there is no 3y value that solves that, we set the confidence limit to the
appropriate extreme.

It is known that the p-values that match the melded confidence intervals for two inde-
pendent binomial observations exactly equal the one-sided Fisher’s exact p-values (see Fay,
et al, 2015). For example,

x1<-6

ni<-12

x2<-15

na2<- 17

exact2x2(matrix(c(x2,n2-x2,x1,n1-x1),2,2), tsmethod="central", midp=FALSE)

V VvV Vv Vv V

Central Fisher's Exact Test



data: matrix(c(x2, n2 - x2, x1, n1 - x1), 2, 2)
p—value = 0.06506
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9119249 89.4167455
sample estimates:
odds ratio
6.924704

> binomMeld.test (x1,n1,x2,n2, parmtype="oddsratio", midp=FALSE)

melded binomial test for oddsratio

data: sample 1:(6/12), sample 2:(15/17)
proportion 1 = 0.5, proportion 2 = 0.88235, p-value = 0.06506
alternative hypothesis: true oddsratio is not equal to 1
95 percent confidence interval:
0.909023 106.265540
sample estimates:
odds ratio {p2(1-p1)}/{p1(1-p2)}
7.5

Note, the confidence intervals for the two methods are not equal.
This does not necessarily mean that the midp versions give equivalent p-values:

x1<-6

ni<-12

x2<-15

n2<- 17

exact2x2(matrix(c(x2,n2-x2,x1,n1-x1),2,2), tsmethod="central", midp=TRUE)

vV VvV VvV Vv V

Central Fisher's Exact Test (mid-p version)

data: matrix(c(x2, n2 - x2, x1, nl1 - x1), 2, 2)
p-value = 0.03578
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.12685 62.05021
sample estimates:
odds ratio
6.924704

> binomMeld.test(x1,n1,x2,n2, parmtype="oddsratio", midp=TRUE)

melded binomial test for oddsratio, mid-p version



data: sample 1:(6/12), sample 2:(15/17)
proportion 1 = 0.5, proportion 2 = 0.88235, p-value = 0.02899
alternative hypothesis: true oddsratio is not equal to 1
95 percent confidence interval:
1.214721 66.148301
sample estimates:
odds ratio {p2(1-p1)}/{p1(1-p2)}
7.5
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